找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuum Mechanics with Eulerian Formulations of Constitutive Equations; M.B. Rubin Book 2021 Springer Nature Switzerland AG 2021 Continu

[復(fù)制鏈接]
查看: 43204|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:36:06 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Continuum Mechanics with Eulerian Formulations of Constitutive Equations
編輯M.B. Rubin
視頻videohttp://file.papertrans.cn/238/237074/237074.mp4
概述Focuses on Eulerian formulation of constitutive equations.Written by a leading expert in the field.Presents state-of-the-art findings
叢書名稱Solid Mechanics and Its Applications
圖書封面Titlebook: Continuum Mechanics with Eulerian Formulations of Constitutive Equations;  M.B. Rubin Book 2021 Springer Nature Switzerland AG 2021 Continu
描述This book focuses on the need for an Eulerian formulation of constitutive equations. After introducing tensor analysis using both index and direct notation, nonlinear kinematics of continua is presented. The balance laws of the purely mechanical theory are discussed along with restrictions on constitutive equations due to superposed rigid body motion. The balance laws of the thermomechanical theory are discussed and specific constitutive equations are presented for: hyperelastic materials; elastic–inelastic materials; thermoelastic–inelastic materials with application to shock waves; thermoelastic–inelastic porous materials; and thermoelastic–inelastic growing biological tissues.
出版日期Book 2021
關(guān)鍵詞Continuum mechanics; thermodynamics of continua; Eulerian formulation; inelasticity; plasticity; viscopla
版次1
doihttps://doi.org/10.1007/978-3-030-57776-6
isbn_softcover978-3-030-57778-0
isbn_ebook978-3-030-57776-6Series ISSN 0925-0042 Series E-ISSN 2214-7764
issn_series 0925-0042
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Continuum Mechanics with Eulerian Formulations of Constitutive Equations影響因子(影響力)




書目名稱Continuum Mechanics with Eulerian Formulations of Constitutive Equations影響因子(影響力)學(xué)科排名




書目名稱Continuum Mechanics with Eulerian Formulations of Constitutive Equations網(wǎng)絡(luò)公開度




書目名稱Continuum Mechanics with Eulerian Formulations of Constitutive Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Continuum Mechanics with Eulerian Formulations of Constitutive Equations被引頻次




書目名稱Continuum Mechanics with Eulerian Formulations of Constitutive Equations被引頻次學(xué)科排名




書目名稱Continuum Mechanics with Eulerian Formulations of Constitutive Equations年度引用




書目名稱Continuum Mechanics with Eulerian Formulations of Constitutive Equations年度引用學(xué)科排名




書目名稱Continuum Mechanics with Eulerian Formulations of Constitutive Equations讀者反饋




書目名稱Continuum Mechanics with Eulerian Formulations of Constitutive Equations讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:37:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:13:15 | 只看該作者
地板
發(fā)表于 2025-3-22 05:27:46 | 只看該作者
5#
發(fā)表于 2025-3-22 12:28:26 | 只看該作者
6#
發(fā)表于 2025-3-22 15:47:28 | 只看該作者
7#
發(fā)表于 2025-3-22 17:04:10 | 只看該作者
8#
發(fā)表于 2025-3-22 23:07:47 | 只看該作者
9#
發(fā)表于 2025-3-23 04:07:28 | 只看該作者
Thermomechanical Theory,new thermal quantities and thermal constraints on material response are discussed. In addition, specific nonlinear constitutive equations are presented for a number of materials modeling: thermoelastic, thermoelastic–inelastic and porous responses. Also, constitutive equations for growth of thermoelastic–inelastic biological tissues are presented.
10#
發(fā)表于 2025-3-23 08:53:56 | 只看該作者
Syed Attiqur Rehman,Zhe Chen,Muhammad Harisformation relations of specific tensors are developed. In addition, an Eulerian formulation of evolution equations for elastic deformations is proposed and strongly objective, robust numerical integration algorithms for these evolution equations are developed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
渭南市| 台中县| 依安县| 东兴市| 中宁县| 鸡西市| 苍山县| 恩施市| 韶关市| 灵寿县| 松原市| 常州市| 丹阳市| 永昌县| 福建省| 扎兰屯市| 和静县| 宝鸡市| 即墨市| 大安市| 玉门市| 成都市| 济南市| 西吉县| 磐安县| 黔西县| 宝丰县| 合肥市| 富顺县| 深州市| 松滋市| 昂仁县| 绥化市| 麻城市| 商河县| 莱州市| 土默特右旗| 玉田县| 铁力市| 长葛市| 龙泉市|