找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuum Mechanics with Eulerian Formulations of Constitutive Equations; M.B. Rubin Book 2021 Springer Nature Switzerland AG 2021 Continu

[復(fù)制鏈接]
樓主: angiotensin-I
11#
發(fā)表于 2025-3-23 12:33:53 | 只看該作者
Charles Consel,Lucile Dupuy,Hélène Sauzéonlations for specific tensors. It is shown that the local forms of the balance laws can be derived by using invariance under SRBM of the rate of material dissipation and these transformation relations. Also, linearization of the kinematic quantities and balance laws are discussed.
12#
發(fā)表于 2025-3-23 15:58:53 | 只看該作者
13#
發(fā)表于 2025-3-23 21:24:56 | 只看該作者
0925-0042 ok focuses on the need for an Eulerian formulation of constitutive equations. After introducing tensor analysis using both index and direct notation, nonlinear kinematics of continua is presented. The balance laws of the purely mechanical theory are discussed along with restrictions on constitutive
14#
發(fā)表于 2025-3-24 00:52:00 | 只看該作者
Lucas Paletta,Martin Pszeida,Mariella Panagl tensor calculus, attention is limited to tensors expressed relative to fixed rectangular Cartesian base vectors. (Some of the content in this chapter has been adapted from Rubin (Cosserat theories: shells, rods and points. Springer Science & Business Media, Berlin, 2000) with permission.)
15#
發(fā)表于 2025-3-24 02:50:17 | 只看該作者
Jay Kalra,Nancy J. Lightner,Redha Taiarstructural vectors .. The influence of kinematic constraints on constitutive equations is discussed and specific nonlinear constitutive equations are presented for a number of materials including: elastic solids, viscous fluids and elastic–inelastic materials.
16#
發(fā)表于 2025-3-24 07:50:50 | 只看該作者
17#
發(fā)表于 2025-3-24 11:54:51 | 只看該作者
18#
發(fā)表于 2025-3-24 17:07:05 | 只看該作者
19#
發(fā)表于 2025-3-24 19:41:32 | 只看該作者
20#
發(fā)表于 2025-3-25 01:21:32 | 只看該作者
0925-0042 resented for: hyperelastic materials; elastic–inelastic materials; thermoelastic–inelastic materials with application to shock waves; thermoelastic–inelastic porous materials; and thermoelastic–inelastic growing biological tissues.978-3-030-57778-0978-3-030-57776-6Series ISSN 0925-0042 Series E-ISSN 2214-7764
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
SHOW| 神农架林区| 民权县| 菏泽市| 石嘴山市| 金门县| 荥经县| 顺昌县| 土默特左旗| 黄梅县| 平江县| 济源市| 金寨县| 蛟河市| 鄂尔多斯市| 白银市| 黄平县| 泰和县| 曲水县| 东宁县| 广安市| 朝阳区| 西昌市| 永吉县| 淮北市| 兴义市| 昌吉市| 黎城县| 洛阳市| 庆阳市| 东宁县| 台州市| 郁南县| 元朗区| 丹阳市| 金溪县| 芜湖县| 绥中县| 桦川县| 清河县| 海兴县|