找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuous-Time Markov Chains; An Applications-Orie William J. Anderson Book 1991 Springer-Verlag New York Inc. 1991 Branching process.Mark

[復制鏈接]
樓主: SORB
21#
發(fā)表于 2025-3-25 04:07:48 | 只看該作者
22#
發(fā)表于 2025-3-25 08:19:41 | 只看該作者
978-1-4612-7772-9Springer-Verlag New York Inc. 1991
23#
發(fā)表于 2025-3-25 12:32:35 | 只看該作者
https://doi.org/10.1007/978-3-322-94827-4In this chapter, we will be looking more closely at questions of nonuniqueness and uniqueness of .-functions. However, it will be more convenient to work with the Laplace transforms of the quantities involved, particularly the resolvent function in place of the transition function, rather than in the time domain as we did in Chapter 2.
24#
發(fā)表于 2025-3-25 16:34:02 | 只看該作者
25#
發(fā)表于 2025-3-25 20:36:29 | 只看該作者
,übungsaufgaben und L?sungswege,A transition function . is said to be . if there exists a set . of strictly positive numbers such that. for all . and ..If, in addition, we have Σ.. = 1, then . is called symmetric. In either case, the set . is called the symmetrizing measure.
26#
發(fā)表于 2025-3-26 01:09:34 | 只看該作者
Teubner Studienbücher MathematikIn this section, we investigate processes with state space . which are basically birth and death processes, but which also allow downward jumps called ., of arbitrary size.
27#
發(fā)表于 2025-3-26 07:25:56 | 只看該作者
28#
發(fā)表于 2025-3-26 12:30:33 | 只看該作者
Classification of States and Invariant Measures,Let ., be a standard transition function, and let . denote a continuous-time Markov chain with state space ., and having . as its transition function.
29#
發(fā)表于 2025-3-26 14:53:03 | 只看該作者
Reversibility, Monotonicity, and Other Properties,A transition function . is said to be . if there exists a set . of strictly positive numbers such that. for all . and ..If, in addition, we have Σ.. = 1, then . is called symmetric. In either case, the set . is called the symmetrizing measure.
30#
發(fā)表于 2025-3-26 19:45:46 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-17 19:00
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乡宁县| 无为县| 泰和县| 迭部县| 诸暨市| 江阴市| 芜湖县| 轮台县| 永德县| 晋江市| 嵊州市| 元谋县| 新蔡县| 来凤县| 大石桥市| 柏乡县| 十堰市| 花莲县| 荣昌县| 广灵县| 额敏县| 象山县| 新源县| 黄浦区| 长寿区| 贡山| 江都市| 十堰市| 宣汉县| 黄大仙区| 聊城市| 丁青县| 沧州市| 交口县| 肥东县| 临泉县| 当涂县| 灌南县| 延津县| 新郑市| 马山县|