找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Groups and Related Symmetries Physical Results and Mathematical Background; Proceedings of a Sym A. O. Barut,H. -D. Doebner Confe

[復制鏈接]
樓主: KEN
21#
發(fā)表于 2025-3-25 05:26:44 | 只看該作者
Transitional Justice in Practiceeted as a homogeneous space of SU(2). An expanding model of the universe is locally approximated by de Sitter spaces. Irreducible representations of the de Sitter group are explicitly constructed in ur theory. From these, Poincaré group representations in Minkowski space with well-defined rest mass
22#
發(fā)表于 2025-3-25 10:26:45 | 只看該作者
https://doi.org/10.1007/978-1-4419-6099-3nformal compactification M of the Minkowski space time. They are interachanged by the space and space-time inversions. It is suggested that Dirac spinor fields should be coupled to a gauge potential in order to get a nontrivial unitary representation of the conformal group in the space of solutions
23#
發(fā)表于 2025-3-25 15:43:57 | 只看該作者
24#
發(fā)表于 2025-3-25 16:33:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:23:28 | 只看該作者
From Heisenberg algebra to conformal dynamical group,The basic algebraic structures in the quantum theory of the electron, from Heisenberg algebra, kinematic algebra, Galilean, and Poincaré groups, to the internal and external conformal algebras are outlined. The universal role of the conformal dynamical group from electron, H-atom, hadrons, to periodic table is discussed.
26#
發(fā)表于 2025-3-26 04:03:35 | 只看該作者
Path integral realization of a dynamical group,A way to realize a dynamical group in terms of a path integral is illustrated by using the Poschl-Teller oscillator.
27#
發(fā)表于 2025-3-26 04:39:51 | 只看該作者
https://doi.org/10.1007/3-540-17163-0conformal field theory; path integral; quantum field; quantum field theory; supergravity
28#
發(fā)表于 2025-3-26 11:04:13 | 只看該作者
29#
發(fā)表于 2025-3-26 13:31:59 | 只看該作者
Conformal Groups and Related Symmetries Physical Results and Mathematical Background978-3-540-47219-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
30#
發(fā)表于 2025-3-26 17:30:39 | 只看該作者
0075-8450 Overview: 978-3-662-14482-4978-3-540-47219-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
兖州市| 苏尼特右旗| 舟山市| 南川市| 班玛县| 炎陵县| 龙海市| 牙克石市| 四川省| 来宾市| 随州市| 万山特区| 临西县| 西和县| 时尚| 会泽县| 英山县| 濮阳市| 商河县| 扎兰屯市| 开远市| 安化县| 扎赉特旗| 资兴市| 盐池县| 沂源县| 吉木乃县| 大新县| 塘沽区| 北票市| 南川市| 莎车县| 高唐县| 喀什市| 团风县| 兰考县| 驻马店市| 岳普湖县| 明水县| 平潭县| 恩平市|