找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Differential Geometry; Q-Curvature and Conf Helga Baum,Andreas Juhl Textbook 2010 Birkh?user Basel 2010 Spinor.Tensor.conformal i

[復(fù)制鏈接]
查看: 18283|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:04:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Conformal Differential Geometry
副標(biāo)題Q-Curvature and Conf
編輯Helga Baum,Andreas Juhl
視頻videohttp://file.papertrans.cn/236/235406/235406.mp4
概述Reviews very recent developments.Compact introduction into an active field of research
叢書名稱Oberwolfach Seminars
圖書封面Titlebook: Conformal Differential Geometry; Q-Curvature and Conf Helga Baum,Andreas Juhl Textbook 2010 Birkh?user Basel 2010 Spinor.Tensor.conformal i
描述.Conformal invariants (conformally invariant tensors, conformally covariant differential operators, conformal holonomy groups etc.) are of central significance in differential geometry and physics. Well-known examples of such operators are the Yamabe-, the Paneitz-, the Dirac- and the twistor operator. The aim of the seminar was to present the basic ideas and some of the recent developments around Q-curvature and conformal holonomy. The part on Q-curvature discusses its origin, its relevance in geometry, spectral theory and physics. Here the influence of ideas which have their origin in the AdS/CFT-correspondence becomes visible. ..The part on conformal holonomy describes recent classification results, its relation to Einstein metrics and to conformal Killing spinors, and related special geometries..
出版日期Textbook 2010
關(guān)鍵詞Spinor; Tensor; conformal invariants; curvature; differential geometry; holonomy
版次1
doihttps://doi.org/10.1007/978-3-7643-9909-2
isbn_softcover978-3-7643-9908-5
isbn_ebook978-3-7643-9909-2Series ISSN 1661-237X Series E-ISSN 2296-5041
issn_series 1661-237X
copyrightBirkh?user Basel 2010
The information of publication is updating

書目名稱Conformal Differential Geometry影響因子(影響力)




書目名稱Conformal Differential Geometry影響因子(影響力)學(xué)科排名




書目名稱Conformal Differential Geometry網(wǎng)絡(luò)公開度




書目名稱Conformal Differential Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Conformal Differential Geometry被引頻次




書目名稱Conformal Differential Geometry被引頻次學(xué)科排名




書目名稱Conformal Differential Geometry年度引用




書目名稱Conformal Differential Geometry年度引用學(xué)科排名




書目名稱Conformal Differential Geometry讀者反饋




書目名稱Conformal Differential Geometry讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:49:07 | 只看該作者
https://doi.org/10.1007/978-3-7643-9909-2Spinor; Tensor; conformal invariants; curvature; differential geometry; holonomy
板凳
發(fā)表于 2025-3-22 01:45:38 | 只看該作者
978-3-7643-9908-5Birkh?user Basel 2010
地板
發(fā)表于 2025-3-22 04:48:25 | 只看該作者
5#
發(fā)表于 2025-3-22 11:04:24 | 只看該作者
6#
發(fā)表于 2025-3-22 13:30:59 | 只看該作者
7#
發(fā)表于 2025-3-22 18:51:36 | 只看該作者
Conformal holonomy,In this section we give a short introduction to Cartan connections and define their holonomy groups. In particular, we explain the relation to holonomy groups of principal fibre bundle connections and to holonomy groups of covariant derivatives in associated vector bundles. Details can be found in [KN63], [Sh97] and [Ba09].
8#
發(fā)表于 2025-3-23 00:12:53 | 只看該作者
Helga Baum,Andreas JuhlReviews very recent developments.Compact introduction into an active field of research
9#
發(fā)表于 2025-3-23 01:39:24 | 只看該作者
10#
發(fā)表于 2025-3-23 07:49:05 | 只看該作者
1661-237X nformal holonomy describes recent classification results, its relation to Einstein metrics and to conformal Killing spinors, and related special geometries..978-3-7643-9908-5978-3-7643-9909-2Series ISSN 1661-237X Series E-ISSN 2296-5041
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱州市| 绩溪县| 桃源县| 晴隆县| 鹤山市| 安溪县| 东兴市| 东乡族自治县| 巧家县| 桐梓县| 合川市| 华蓥市| 齐河县| 贵溪市| 伊通| 长寿区| 饶河县| 日土县| 慈利县| 玛纳斯县| 邳州市| 翁源县| 铁岭县| 若尔盖县| 东辽县| 从江县| 宜川县| 进贤县| 兰州市| 额尔古纳市| 昌宁县| 富源县| 中阳县| 汶川县| 始兴县| 雷波县| 贵阳市| 陆良县| 田东县| 桂林市| 平塘县|