找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Differential Geometry; Q-Curvature and Conf Helga Baum,Andreas Juhl Textbook 2010 Birkh?user Basel 2010 Spinor.Tensor.conformal i

[復(fù)制鏈接]
查看: 18284|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:04:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Conformal Differential Geometry
副標(biāo)題Q-Curvature and Conf
編輯Helga Baum,Andreas Juhl
視頻videohttp://file.papertrans.cn/236/235406/235406.mp4
概述Reviews very recent developments.Compact introduction into an active field of research
叢書名稱Oberwolfach Seminars
圖書封面Titlebook: Conformal Differential Geometry; Q-Curvature and Conf Helga Baum,Andreas Juhl Textbook 2010 Birkh?user Basel 2010 Spinor.Tensor.conformal i
描述.Conformal invariants (conformally invariant tensors, conformally covariant differential operators, conformal holonomy groups etc.) are of central significance in differential geometry and physics. Well-known examples of such operators are the Yamabe-, the Paneitz-, the Dirac- and the twistor operator. The aim of the seminar was to present the basic ideas and some of the recent developments around Q-curvature and conformal holonomy. The part on Q-curvature discusses its origin, its relevance in geometry, spectral theory and physics. Here the influence of ideas which have their origin in the AdS/CFT-correspondence becomes visible. ..The part on conformal holonomy describes recent classification results, its relation to Einstein metrics and to conformal Killing spinors, and related special geometries..
出版日期Textbook 2010
關(guān)鍵詞Spinor; Tensor; conformal invariants; curvature; differential geometry; holonomy
版次1
doihttps://doi.org/10.1007/978-3-7643-9909-2
isbn_softcover978-3-7643-9908-5
isbn_ebook978-3-7643-9909-2Series ISSN 1661-237X Series E-ISSN 2296-5041
issn_series 1661-237X
copyrightBirkh?user Basel 2010
The information of publication is updating

書目名稱Conformal Differential Geometry影響因子(影響力)




書目名稱Conformal Differential Geometry影響因子(影響力)學(xué)科排名




書目名稱Conformal Differential Geometry網(wǎng)絡(luò)公開度




書目名稱Conformal Differential Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Conformal Differential Geometry被引頻次




書目名稱Conformal Differential Geometry被引頻次學(xué)科排名




書目名稱Conformal Differential Geometry年度引用




書目名稱Conformal Differential Geometry年度引用學(xué)科排名




書目名稱Conformal Differential Geometry讀者反饋




書目名稱Conformal Differential Geometry讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:49:07 | 只看該作者
https://doi.org/10.1007/978-3-7643-9909-2Spinor; Tensor; conformal invariants; curvature; differential geometry; holonomy
板凳
發(fā)表于 2025-3-22 01:45:38 | 只看該作者
978-3-7643-9908-5Birkh?user Basel 2010
地板
發(fā)表于 2025-3-22 04:48:25 | 只看該作者
5#
發(fā)表于 2025-3-22 11:04:24 | 只看該作者
6#
發(fā)表于 2025-3-22 13:30:59 | 只看該作者
7#
發(fā)表于 2025-3-22 18:51:36 | 只看該作者
Conformal holonomy,In this section we give a short introduction to Cartan connections and define their holonomy groups. In particular, we explain the relation to holonomy groups of principal fibre bundle connections and to holonomy groups of covariant derivatives in associated vector bundles. Details can be found in [KN63], [Sh97] and [Ba09].
8#
發(fā)表于 2025-3-23 00:12:53 | 只看該作者
Helga Baum,Andreas JuhlReviews very recent developments.Compact introduction into an active field of research
9#
發(fā)表于 2025-3-23 01:39:24 | 只看該作者
10#
發(fā)表于 2025-3-23 07:49:05 | 只看該作者
1661-237X nformal holonomy describes recent classification results, its relation to Einstein metrics and to conformal Killing spinors, and related special geometries..978-3-7643-9908-5978-3-7643-9909-2Series ISSN 1661-237X Series E-ISSN 2296-5041
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻江县| 宜阳县| 获嘉县| 浠水县| 哈密市| 梁河县| 马边| 阿鲁科尔沁旗| 东乌珠穆沁旗| 布尔津县| 色达县| 小金县| 巫溪县| 高要市| 普陀区| 青州市| 新和县| 会理县| 应用必备| 醴陵市| 和林格尔县| 浙江省| 河源市| 长白| 弋阳县| 静宁县| 建湖县| 远安县| 潢川县| 东兴市| 达拉特旗| 和平县| 信阳市| 汝州市| 弋阳县| 安新县| 乌拉特中旗| 门头沟区| 林周县| 新昌县| 安平县|