找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Configuration Spaces; Geometry, Topology a Filippo Callegaro,Frederick Cohen,Mario Salvetti Book 2016 Springer International Publishing Swi

[復(fù)制鏈接]
樓主: 銀河
51#
發(fā)表于 2025-3-30 10:18:42 | 只看該作者
Bruno Grancelli,Antonio M. Chiesieric values of its variables . and .. The . variable is closely connected to the traditional Garside structure of the braid group and plays a major role in Krammer’s algebraic proof. The . variable, associated with the dual Garside structure of the braid group, has received less attention. In this a
52#
發(fā)表于 2025-3-30 12:58:44 | 只看該作者
53#
發(fā)表于 2025-3-30 18:36:47 | 只看該作者
https://doi.org/10.1007/978-3-642-44988-8ups to Lie groups ., and to describe their connections to classical representation theory, as well as other structures. Various properties are given when . is replaced by a small category, or the discrete group is given by a right-angled Artin group.
54#
發(fā)表于 2025-3-30 22:57:58 | 只看該作者
Filippo Callegaro,Frederick Cohen,Mario SalvettiHigh-level contributions by leading experts in the field.Fully refereed original papers.Provides an ideal resource for researchers seeking an overview of current trends
55#
發(fā)表于 2025-3-31 01:24:44 | 只看該作者
56#
發(fā)表于 2025-3-31 08:01:50 | 只看該作者
57#
發(fā)表于 2025-3-31 09:10:32 | 只看該作者
58#
發(fā)表于 2025-3-31 17:16:39 | 只看該作者
https://doi.org/10.1007/978-3-642-44988-8ups to Lie groups ., and to describe their connections to classical representation theory, as well as other structures. Various properties are given when . is replaced by a small category, or the discrete group is given by a right-angled Artin group.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 13:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
婺源县| 大厂| 道真| 获嘉县| 邹城市| 裕民县| 六枝特区| 沂南县| 建湖县| 邛崃市| 唐河县| 新建县| 宝应县| 新和县| 宁波市| 牙克石市| 苍山县| 沙湾县| 界首市| 龙胜| 河源市| 德州市| 肇庆市| 卢龙县| 桃江县| 松桃| 朝阳县| 琼海市| 彭水| 麻栗坡县| 五台县| 南靖县| 曲阜市| 新乡县| 呼玛县| 龙门县| 明水县| 竹北市| 巍山| 全州县| 上栗县|