找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Configuration Spaces; Geometry, Topology a Filippo Callegaro,Frederick Cohen,Mario Salvetti Book 2016 Springer International Publishing Swi

[復(fù)制鏈接]
樓主: 銀河
11#
發(fā)表于 2025-3-23 11:06:34 | 只看該作者
12#
發(fā)表于 2025-3-23 16:05:26 | 只看該作者
Local Asymptotic Euler-Maclaurin Expansion for Riemann Sums over a Semi-Rational Polyhedron,erator for the face . can be chosen (in a unique way) to involve only normal derivatives to ...Our formulas are valid for a semi-rational polyhedron and a real sampling parameter ., if we allow for . coefficients, instead of just constant ones.
13#
發(fā)表于 2025-3-23 18:08:04 | 只看該作者
Cryptomorphisms for Abstract Rigidity Matroids,ract rigidity matroids by means of certain “prescribed substructures”. We then prove a recursive version of this conjecture. (This is an extended version of the second author’s bachelor thesis at University of Bremen.).
14#
發(fā)表于 2025-3-23 23:32:35 | 只看該作者
15#
發(fā)表于 2025-3-24 06:07:21 | 只看該作者
16#
發(fā)表于 2025-3-24 08:58:39 | 只看該作者
17#
發(fā)表于 2025-3-24 12:21:05 | 只看該作者
Bruno Grancelli,Antonio M. Chiesinerate euclidean simplices. In our interpretation, braid group elements act by systematically reshaping (and relabeling) euclidean simplices. The reshapings associated to the simple elements in the dual Garside structure of the braid group are of an especially elementary type that we call relabeling and rescaling.
18#
發(fā)表于 2025-3-24 16:35:45 | 只看該作者
19#
發(fā)表于 2025-3-24 20:28:33 | 只看該作者
20#
發(fā)表于 2025-3-25 02:06:51 | 只看該作者
Induced and Complete Multinets,, inducibility and completeness, and the relationship between them are explored with several examples presented. Specializations of multinets plays an integral role in our findings. The main result is the classification of complete 3-nets.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 07:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会宁县| 江北区| 固原市| 贵溪市| 彝良县| 来凤县| 博客| 长武县| 双桥区| 樟树市| 犍为县| 扎囊县| 伊金霍洛旗| 囊谦县| 田林县| 江孜县| 隆昌县| 基隆市| 长武县| 方正县| 辽中县| 乌拉特前旗| 宁波市| 双江| 五寨县| 永宁县| 平阴县| 阿图什市| 泾源县| 黄平县| 西平县| 阳城县| 彭阳县| 顺昌县| 仙居县| 上思县| 黔南| 高陵县| 连江县| 宣化县| 南通市|