找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Concentration Analysis and Applications to PDE; ICTS Workshop, Banga Adimurthi,K. Sandeep,Cyril Tintarev Conference proceedings 2013 Spring

[復(fù)制鏈接]
樓主: fundoplication
21#
發(fā)表于 2025-3-25 03:24:07 | 只看該作者
22#
發(fā)表于 2025-3-25 08:56:26 | 只看該作者
Topics in Atomic and Nuclear Collisionsr and ..In particular, we prove existence and multiplicity of positive and sign changing solutions which blow-up or blow-down at one or more points of the domain as the parameter ? goes to zero. The main tool is the Ljapunov–Schmidt reduction method.
23#
發(fā)表于 2025-3-25 14:51:31 | 只看該作者
https://doi.org/10.1057/9780230271319file decompositions are formulated in relation to a triplet (.), where . and . are Banach spaces, . ? . , and . is, typically, a set of surjective isometries on both . and .. A profile decomposition is a representation of a bounded sequence in . as a sum of elementary concentrations of the form . .,
24#
發(fā)表于 2025-3-25 18:31:16 | 只看該作者
25#
發(fā)表于 2025-3-25 21:36:25 | 只看該作者
26#
發(fā)表于 2025-3-26 01:54:49 | 只看該作者
Conference proceedings 2013intended to approximate solutions of partial differential equations. Since the introduction of concentration compactness in the 1980s, concentration analysis today is formalized on the functional-analytic level as well as in terms of wavelets, extends to a wide range of spaces, involves much larger
27#
發(fā)表于 2025-3-26 06:14:43 | 只看該作者
28#
發(fā)表于 2025-3-26 12:08:03 | 只看該作者
29#
發(fā)表于 2025-3-26 13:50:34 | 只看該作者
30#
發(fā)表于 2025-3-26 17:40:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 10:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武威市| 玉龙| 达拉特旗| 蒲城县| 柳林县| 金秀| 彭州市| 进贤县| 剑阁县| 江门市| 沂南县| 建平县| 策勒县| 阳新县| 墨竹工卡县| 青州市| 承德县| 文化| 湘乡市| 辛集市| 盈江县| 平泉县| 杭锦旗| 安仁县| 贵阳市| 新竹县| 金寨县| 阳山县| 都安| 华池县| 龙游县| 麻栗坡县| 三江| 元江| 五常市| 衡山县| 利辛县| 新河县| 孙吴县| 双流县| 栖霞市|