找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Concentration Analysis and Applications to PDE; ICTS Workshop, Banga Adimurthi,K. Sandeep,Cyril Tintarev Conference proceedings 2013 Spring

[復(fù)制鏈接]
查看: 19673|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:58:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Concentration Analysis and Applications to PDE
副標(biāo)題ICTS Workshop, Banga
編輯Adimurthi,K. Sandeep,Cyril Tintarev
視頻videohttp://file.papertrans.cn/235/234851/234851.mp4
概述Unique collection of contributions of experts from different areas of analysis.Presents a variety of approaches to concentration and blow-up phenomena in PDE.Contains also survey articles aimed to hel
叢書(shū)名稱Trends in Mathematics
圖書(shū)封面Titlebook: Concentration Analysis and Applications to PDE; ICTS Workshop, Banga Adimurthi,K. Sandeep,Cyril Tintarev Conference proceedings 2013 Spring
描述Concentration analysis provides, in settings without a priori available compactness, a manageable structural description for the functional sequences intended to approximate solutions of partial differential equations. Since the introduction of concentration compactness in the 1980s, concentration analysis today is formalized on the functional-analytic level as well as in terms of wavelets, extends to a wide range of spaces, involves much larger class of invariances than the original Euclidean rescalings and has a broad scope of applications to PDE. This book represents current research in concentration and blow-up phenomena from various perspectives, with a variety of applications to elliptic and evolution PDEs, as well as a systematic functional-analytic background for concentration phenomena, presented by profile decompositions based on wavelet theory and cocompact imbeddings.
出版日期Conference proceedings 2013
關(guān)鍵詞partial differential equations
版次1
doihttps://doi.org/10.1007/978-3-0348-0373-1
isbn_ebook978-3-0348-0373-1Series ISSN 2297-0215 Series E-ISSN 2297-024X
issn_series 2297-0215
copyrightSpringer Basel 2013
The information of publication is updating

書(shū)目名稱Concentration Analysis and Applications to PDE影響因子(影響力)




書(shū)目名稱Concentration Analysis and Applications to PDE影響因子(影響力)學(xué)科排名




書(shū)目名稱Concentration Analysis and Applications to PDE網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Concentration Analysis and Applications to PDE網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Concentration Analysis and Applications to PDE被引頻次




書(shū)目名稱Concentration Analysis and Applications to PDE被引頻次學(xué)科排名




書(shū)目名稱Concentration Analysis and Applications to PDE年度引用




書(shū)目名稱Concentration Analysis and Applications to PDE年度引用學(xué)科排名




書(shū)目名稱Concentration Analysis and Applications to PDE讀者反饋




書(shū)目名稱Concentration Analysis and Applications to PDE讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:57:09 | 只看該作者
,The Ljapunov–Schmidt Reduction for Some Critical Problems,r and ..In particular, we prove existence and multiplicity of positive and sign changing solutions which blow-up or blow-down at one or more points of the domain as the parameter ? goes to zero. The main tool is the Ljapunov–Schmidt reduction method.
板凳
發(fā)表于 2025-3-22 02:19:03 | 只看該作者
Concentration Analysis and Cocompactness,file decompositions are formulated in relation to a triplet (.), where . and . are Banach spaces, . ? . , and . is, typically, a set of surjective isometries on both . and .. A profile decomposition is a representation of a bounded sequence in . as a sum of elementary concentrations of the form . .,
地板
發(fā)表于 2025-3-22 05:40:44 | 只看該作者
,A Note on Non-radial Sign-changing Solutions for the Schr?dinger–Poisson Problem in the Semiclassicassical limit. Indeed we construct non-radial multi-peak solutions with an arbitrary large number of positive and negative peaks which are displaced in suitable symmetric configurations and which collapse to the same point as ? ? 0. The proof is based on the Lyapunov–Schmidt reduction.
5#
發(fā)表于 2025-3-22 12:44:46 | 只看該作者
6#
發(fā)表于 2025-3-22 16:31:01 | 只看該作者
7#
發(fā)表于 2025-3-22 20:49:44 | 只看該作者
8#
發(fā)表于 2025-3-23 00:01:43 | 只看該作者
9#
發(fā)表于 2025-3-23 03:06:05 | 只看該作者
https://doi.org/10.1007/0-387-31074-6We compute the best constants in some dilation invariant inequalities for the weighted ., with weights being powers of the distance from the origin.
10#
發(fā)表于 2025-3-23 08:46:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 10:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威宁| 陇南市| 汉中市| 玉树县| 平邑县| 绥阳县| 昭平县| 南充市| 富宁县| 富川| 墨脱县| 兴和县| 兖州市| 云浮市| 修文县| 崇左市| 吉安市| 安庆市| 洮南市| 鸡泽县| 巩留县| 曲靖市| 原阳县| 花莲市| 罗田县| 鸡东县| 盐亭县| 涟水县| 通渭县| 喀喇沁旗| 横峰县| 安西县| 遵化市| 江津市| 芮城县| 兴安县| 康平县| 南陵县| 滨海县| 辉南县| 庆元县|