找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing the Continuous Discretely; Integer-Point Enumer Matthias Beck,Sinai Robins Textbook 2015Latest edition Matthias Beck and Sinai Ro

[復(fù)制鏈接]
樓主: External-Otitis
21#
發(fā)表于 2025-3-25 05:24:32 | 只看該作者
A Gallery of Discrete Volumesion in various infinite families of integral and rational polytopes, and we will realize that many well-known families of numbers and polynomials, such as Bernoulli and Stirling numbers, make an appearance as the lattice-point enumerators of some concrete families of polytopes.
22#
發(fā)表于 2025-3-25 08:06:24 | 只看該作者
23#
發(fā)表于 2025-3-25 13:43:18 | 只看該作者
Finite Fourier Analysisheory using rational functions and their partial fraction decomposition. We then define the . and the . of finite Fourier series, and show how one can use these ideas to prove identities on trigonometric functions, as well as find connections to the classical ..
24#
發(fā)表于 2025-3-25 18:31:41 | 只看該作者
25#
發(fā)表于 2025-3-25 23:17:12 | 只看該作者
26#
發(fā)表于 2025-3-26 03:42:09 | 只看該作者
27#
發(fā)表于 2025-3-26 05:04:57 | 只看該作者
28#
發(fā)表于 2025-3-26 10:49:35 | 只看該作者
https://doi.org/10.1007/978-3-319-53725-2 the continuous volumes of .. Relations between the two quantities . and . are known as . formulas for polytopes. The “behind-the-scenes” operators that are responsible for affording us with such connections are the differential operators known as ., whose definition utilizes the Bernoulli numbers in a surprising way.
29#
發(fā)表于 2025-3-26 14:07:05 | 只看該作者
30#
發(fā)表于 2025-3-26 19:18:43 | 只看該作者
The Coin-Exchange Problem of Frobenius into the continuous world of functions. We introduce techniques for working with generating functions, and we use them to shed light on the .: Given relatively prime positive integers ., what is the largest integer that cannot be written as a nonnegative integral linear combination of .?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹棱县| 时尚| 民乐县| 潢川县| 江油市| 德安县| 东平县| 岱山县| 贺兰县| 西华县| 平武县| 基隆市| 洞口县| 黑山县| 天门市| 株洲市| 汉中市| 永和县| 建始县| 漳平市| 得荣县| 九龙县| 都匀市| 锦屏县| 江安县| 颍上县| 建瓯市| 阜宁县| 深泽县| 育儿| 姚安县| 青川县| 宜春市| 孟津县| 河东区| 鲁甸县| 二连浩特市| 乌什县| 隆安县| 二连浩特市| 肇庆市|