找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing the Continuous Discretely; Integer-Point Enumer Matthias Beck,Sinai Robins Textbook 2015Latest edition Matthias Beck and Sinai Ro

[復(fù)制鏈接]
樓主: External-Otitis
11#
發(fā)表于 2025-3-23 11:52:21 | 只看該作者
12#
發(fā)表于 2025-3-23 16:45:16 | 只看該作者
https://doi.org/10.1007/978-94-017-3530-8ion .?≤?4. In this chapter, we focus on the computational-complexity issues that arise when we try to compute Dedekind sums explicitly. In many ways, the Dedekind sums extend the notion of the greatest common divisor of two integers.
13#
發(fā)表于 2025-3-23 20:14:10 | 只看該作者
Dedekind Sums, the Building Blocks of Lattice-Point Enumerationion .?≤?4. In this chapter, we focus on the computational-complexity issues that arise when we try to compute Dedekind sums explicitly. In many ways, the Dedekind sums extend the notion of the greatest common divisor of two integers.
14#
發(fā)表于 2025-3-23 22:53:42 | 只看該作者
15#
發(fā)表于 2025-3-24 04:17:57 | 只看該作者
16#
發(fā)表于 2025-3-24 06:40:19 | 只看該作者
17#
發(fā)表于 2025-3-24 13:21:12 | 只看該作者
18#
發(fā)表于 2025-3-24 18:08:43 | 只看該作者
19#
發(fā)表于 2025-3-24 22:09:12 | 只看該作者
Akitaka Dohtani,Toshio Inaba,Hiroshi Osakarational function, we introduced the name .. for its numerator: . Our goal in this chapter is to prove several decomposition formulas for . based on triangulations of .. As we will see, these decompositions will involve both arithmetic data from the simplices of the triangulation and combinatorial data from the face structure of the triangulation.
20#
發(fā)表于 2025-3-25 00:52:46 | 只看該作者
https://doi.org/10.1007/978-94-017-3536-0 transforms a continuous integral into a discrete sum of residues. Using the ..., we show here that Pick’s theorem is a discrete version of Green’s theorem in the plane. As a bonus, we also obtain an integral formula for the discrepancy between the area enclosed by a general curve . and the number of integer points contained in?..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
信宜市| 紫阳县| 申扎县| 崇文区| 杨浦区| 阿克陶县| 青铜峡市| 怀柔区| 昌平区| 哈巴河县| 集贤县| 乌拉特中旗| 工布江达县| 封丘县| 马龙县| 锦屏县| 阿瓦提县| 尖扎县| 彭山县| 宜阳县| 吉水县| 枣强县| 梁河县| 牟定县| 兴国县| 吉林省| 宁陕县| 灯塔市| 防城港市| 大渡口区| 余江县| 蒙阴县| 德令哈市| 故城县| 高淳县| 铁力市| 惠安县| 华容县| 六盘水市| 泽普县| 清水河县|