找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
查看: 37664|回復(fù): 59
樓主
發(fā)表于 2025-3-21 17:41:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computer Vision – ECCV 2022
副標(biāo)題17th European Confer
編輯Shai Avidan,Gabriel Brostow,Tal Hassner
視頻videohttp://file.papertrans.cn/235/234262/234262.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app
描述.The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022..?.The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation..
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; clustering algorithms; computer systems; computer vision; data mining; image ana
版次1
doihttps://doi.org/10.1007/978-3-031-20056-4
isbn_softcover978-3-031-20055-7
isbn_ebook978-3-031-20056-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Computer Vision – ECCV 2022影響因子(影響力)




書目名稱Computer Vision – ECCV 2022影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ECCV 2022網(wǎng)絡(luò)公開(kāi)度




書目名稱Computer Vision – ECCV 2022網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Computer Vision – ECCV 2022被引頻次




書目名稱Computer Vision – ECCV 2022被引頻次學(xué)科排名




書目名稱Computer Vision – ECCV 2022年度引用




書目名稱Computer Vision – ECCV 2022年度引用學(xué)科排名




書目名稱Computer Vision – ECCV 2022讀者反饋




書目名稱Computer Vision – ECCV 2022讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:43:01 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:58:08 | 只看該作者
,Bi-directional Contrastive Learning for?Domain Adaptive Semantic Segmentation,ng ground-truth labels to a target domain. A key to domain adaptive semantic segmentation is to learn domain-invariant and discriminative features without target ground-truth labels. To this end, we propose a bi-directional pixel-prototype contrastive learning framework that minimizes intra-class va
地板
發(fā)表于 2025-3-22 06:39:59 | 只看該作者
,Learning Regional Purity for?Instance Segmentation on?3D Point Clouds,ds have been proposed recently for this task, with remarkable results and high efficiency. However, these methods heavily rely on instance centroid regression and do not explicitly detect object boundaries, thus may mistakenly group nearby objects into the same clusters in some scenarios. In this pa
5#
發(fā)表于 2025-3-22 10:33:01 | 只看該作者
Cross-Domain Few-Shot Semantic Segmentation,etting where base classes are sampled from the same domain as the novel classes. However, in many applications, collecting sufficient training data for meta-learning is infeasible or impossible. In this paper, we extend few-shot semantic segmentation to a new task, called Cross-Domain Few-Shot Seman
6#
發(fā)表于 2025-3-22 13:07:40 | 只看該作者
,Generative Subgraph Contrast for?Self-Supervised Graph Representation Learning,raph contrastive learning methods rely on the vector inner product based similarity metric to distinguish the samples for graph representation. However, the handcrafted sample construction (e.g., the perturbation on the nodes or edges of the graph) may not effectively capture the intrinsic local str
7#
發(fā)表于 2025-3-22 17:28:50 | 只看該作者
SdAE: Self-distillated Masked Autoencoder,dom patches of the input image and reconstructing the missing information has grown in concern. However, BeiT and PeCo need a “pre-pretraining” stage to produce discrete codebooks for masked patches representing. MAE does not require a pre-training codebook process, but setting pixels as reconstruct
8#
發(fā)表于 2025-3-22 23:13:22 | 只看該作者
9#
發(fā)表于 2025-3-23 02:44:08 | 只看該作者
Open-Set Semi-Supervised Object Detection,ever, thus far these methods have assumed that the unlabeled data does not contain out-of-distribution (OOD) classes, which is unrealistic with larger-scale unlabeled datasets. In this paper, we consider a more practical yet challenging problem, Open-Set Semi-Supervised Object Detection (OSSOD). We
10#
發(fā)表于 2025-3-23 05:42:16 | 只看該作者
,Vibration-Based Uncertainty Estimation for?Learning from?Limited Supervision,ited supervision. However, both prediction probability and entropy estimate uncertainty from the instantaneous information. In this paper, we present a novel approach that measures uncertainty from the vibration of sequential data, ., the output probability during the training procedure. The key obs
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 02:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
姜堰市| 襄城县| 瑞丽市| 北京市| 孙吴县| 浠水县| 建昌县| 攀枝花市| 义乌市| 惠来县| 乌苏市| 那坡县| 民勤县| 敦煌市| 康定县| 崇明县| 阳信县| 平安县| 香港| 卢龙县| 永安市| 溧水县| 时尚| 崇明县| 二手房| 察雅县| 楚雄市| 南雄市| 常德市| 昌乐县| 若羌县| 老河口市| 霍州市| 嘉祥县| 宜君县| 永清县| 宁乡县| 三原县| 呼伦贝尔市| 绥棱县| 临清市|