找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復制鏈接]
樓主: Falter
11#
發(fā)表于 2025-3-23 13:38:59 | 只看該作者
12#
發(fā)表于 2025-3-23 16:45:14 | 只看該作者
,Weakly Supervised Object Localization Through Inter-class Feature Similarity and?Intra-class Appearused features for WSOL. However, existing CAM-based methods tend to excessively pursue discriminative features for object recognition and hence ignore the feature similarities among different categories, thereby leading to CAMs incomplete for object localization. In addition, CAMs are sensitive to b
13#
發(fā)表于 2025-3-23 18:56:45 | 只看該作者
,Active Learning Strategies for?Weakly-Supervised Object Detection,formance gap between them. We propose to narrow this gap by fine-tuning a base pre-trained weakly-supervised detector with a few fully-annotated samples automatically selected from the training set using “box-in-box” (BiB), a novel active learning strategy designed specifically to address the well-d
14#
發(fā)表于 2025-3-23 23:44:01 | 只看該作者
15#
發(fā)表于 2025-3-24 04:35:37 | 只看該作者
16#
發(fā)表于 2025-3-24 08:09:14 | 只看該作者
,Unsupervised Visual Representation Learning by?Synchronous Momentum Grouping,asses the vanilla supervised learning. Two mainstream unsupervised learning schemes are the instance-level contrastive framework and clustering-based schemes. The former adopts the extremely fine-grained instance-level discrimination whose supervisory signal is not efficient due to the false negativ
17#
發(fā)表于 2025-3-24 12:09:34 | 只看該作者
Improving Few-Shot Part Segmentation Using Coarse Supervision,oit coarse labels such as figure-ground masks and keypoint locations that are readily available for some categories to improve part segmentation models. A key challenge is that these annotations were collected for different tasks and with different labeling styles and cannot be readily mapped to the
18#
發(fā)表于 2025-3-24 17:00:13 | 只看該作者
,What to?Hide from?Your Students: Attention-Guided Masked Image Modeling,e token masking differs from token masking in text, due to the amount and correlation of tokens in an image. In particular, to generate a challenging pretext task for MIM, we advocate a shift from random masking to informed masking. We develop and exhibit this idea in the context of distillation-bas
19#
發(fā)表于 2025-3-24 22:36:56 | 只看該作者
Pointly-Supervised Panoptic Segmentation,evel labels used by fully supervised methods, point-level labels only provide a single point for each target as supervision, significantly reducing the annotation burden. We formulate the problem in an end-to-end framework by simultaneously generating panoptic pseudo-masks from point-level labels an
20#
發(fā)表于 2025-3-25 02:30:22 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宜兴市| 洪泽县| 敦化市| 阿拉善盟| 家居| 阿拉善盟| 伊吾县| 巴林左旗| 宜宾市| 彭阳县| 曲周县| 麟游县| 汉寿县| 宜阳县| 平顺县| 兴义市| 本溪市| 富顺县| 兰西县| 习水县| 土默特右旗| 渭南市| 新密市| 稻城县| 巍山| 屏南县| 道真| 梨树县| 黄冈市| 辛集市| 巴林左旗| 诸暨市| 社旗县| 绥德县| 宣化县| 平潭县| 常宁市| 连城县| 仁布县| 和顺县| 沂水县|