找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: COAX
51#
發(fā)表于 2025-3-30 11:24:07 | 只看該作者
978-3-031-20079-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
52#
發(fā)表于 2025-3-30 13:53:07 | 只看該作者
53#
發(fā)表于 2025-3-30 18:21:41 | 只看該作者
,DFNet: Enhance Absolute Pose Regression with?Direct Feature Matching,door and outdoor scenes. Hence, our method achieves a state-of-the-art accuracy by outperforming existing single-image APR methods by as much as 56%, comparable to 3D structure-based methods. (The code is available in ..)
54#
發(fā)表于 2025-3-30 22:44:26 | 只看該作者
,PillarNet: Real-Time and?High-Performance Pillar-Based 3D Object Detection,nd compatible with classical 2D CNN backbones, such as VGGNet and ResNet. Additionally, PillarNet benefits from our designed orientation-decoupled IoU regression loss along with the IoU-aware prediction branch. Extensive experimental results on the large-scale nuScenes Dataset and Waymo Open Dataset
55#
發(fā)表于 2025-3-31 02:01:49 | 只看該作者
,Robust Object Detection with?Inaccurate Bounding Boxes,bject-aware instance extension. The former aims to select accurate instances for training, instead of directly using inaccurate box annotations. The latter focuses on generating high-quality instances for selection. Extensive experiments on synthetic noisy datasets (., noisy PASCAL VOC and MS-COCO)
56#
發(fā)表于 2025-3-31 08:56:20 | 只看該作者
57#
發(fā)表于 2025-3-31 10:34:40 | 只看該作者
58#
發(fā)表于 2025-3-31 14:35:37 | 只看該作者
Towards Accurate Active Camera Localization,challenging localization scenarios from both synthetic and scanned real-world indoor scenes. Experimental results demonstrate that our algorithm outperforms both the state-of-the-art Markov Localization based approach and other compared approaches on the fine-scale camera pose accuracy. Code and dat
59#
發(fā)表于 2025-3-31 20:18:59 | 只看該作者
60#
發(fā)表于 2025-3-31 23:59:51 | 只看該作者
,Improving the?Intra-class Long-Tail in?3D Detection via?Rare Example Mining, active learning based on the criteria of uncertainty, difficulty, or diversity. In this study, we identify a new conceptual dimension - rareness - to mine new data for improving the long-tail performance of models. We show that rareness, as opposed to difficulty, is the key to data-centric improvem
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 00:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涿州市| 合川市| 射阳县| 曲周县| 西华县| 京山县| 潼关县| 裕民县| 黑河市| 交口县| 雅安市| 日喀则市| 涪陵区| 共和县| 长治县| 巫山县| 修水县| 鞍山市| 杭锦后旗| 张家口市| 永善县| 松原市| 合江县| 乌拉特后旗| 原平市| 城口县| 建水县| 昔阳县| 汉川市| 荣成市| 饶平县| 桂林市| 沅陵县| 绵竹市| 泰安市| 郸城县| 玉树县| 南岸区| 南木林县| 上虞市| 北海市|