找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: COAX
41#
發(fā)表于 2025-3-28 18:12:45 | 只看該作者
42#
發(fā)表于 2025-3-28 22:37:12 | 只看該作者
J. Harvey B.Sc. (Econ.), Dip. Ed. (Oxford)ied unknown classes. However, it cannot distinguish unknown instances as multiple unknown classes. In this work, we propose a novel OWOD problem called Unknown-Classified Open World Object Detection (UC-OWOD). UC-OWOD aims to detect unknown instances and classify them into different unknown classes.
43#
發(fā)表于 2025-3-29 01:41:14 | 只看該作者
Alessandro Cigno,Furio C. Rosatipresent its knowledge: as a global 3D grid of features and an array of view-specific 2D grids. We progressively exchange information between the two with a dedicated bidirectional attention mechanism. We exploit knowledge about the image formation process to significantly sparsify the attention weig
44#
發(fā)表于 2025-3-29 03:07:55 | 只看該作者
45#
發(fā)表于 2025-3-29 08:47:34 | 只看該作者
Alain de Crombrugghe,Louis Geversource-consuming, and depending only on supervised learning limits the applicability of trained models. Self-supervised training strategies can alleviate these issues by learning a general point cloud backbone model for downstream 3D vision tasks. Against this backdrop, we show the relationship betwe
46#
發(fā)表于 2025-3-29 14:30:48 | 只看該作者
47#
發(fā)表于 2025-3-29 19:31:42 | 只看該作者
48#
發(fā)表于 2025-3-29 21:49:28 | 只看該作者
49#
發(fā)表于 2025-3-30 00:16:31 | 只看該作者
L. V. Kantorovich,V. L. Makarov, existing efforts mainly focus on improving matching accuracy while ignoring its efficiency, which is crucial for real-world applications. In this paper, we propose an efficient structure named Efficient Correspondence Transformer (.) by finding correspondences in a coarse-to-fine manner, which sig
50#
發(fā)表于 2025-3-30 07:04:02 | 只看該作者
https://doi.org/10.1007/978-3-031-20080-9Computer Science; Informatics; Conference Proceedings; Research; Applications
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 00:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
调兵山市| 上蔡县| 洪洞县| 内黄县| 霸州市| 华坪县| 许昌县| 兴海县| 太湖县| 仁布县| 永靖县| 临沧市| 会东县| 江津市| 普格县| 双桥区| 宁陵县| 沂南县| 马鞍山市| 松溪县| 东光县| 丘北县| 阳西县| 虞城县| 望都县| 阿克苏市| 阳信县| 武平县| 连州市| 肃北| 永丰县| 左贡县| 岳西县| 乐山市| 平凉市| 兴和县| 凭祥市| 元江| 安新县| 兴安盟| 望都县|