找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: 租期
41#
發(fā)表于 2025-3-28 14:46:38 | 只看該作者
,Action-Based Contrastive Learning for?Trajectory Prediction,les. Additional synthetic trajectory samples are generated using a trained Conditional Variational Autoencoder (CVAE), which is at the core of several models developed for trajectory prediction. Results show that our proposed contrastive framework employs contextual information about pedestrian beha
42#
發(fā)表于 2025-3-28 21:41:18 | 只看該作者
43#
發(fā)表于 2025-3-28 23:01:11 | 只看該作者
Efficient Point Cloud Segmentation with Geometry-Aware Sparse Networks,n, we propose deep sparse supervision in the training phase to help convergence and alleviate the memory consumption problem. Our GASN achieves state-of-the-art performance on both SemanticKITTI and Nuscenes datasets while running significantly faster and consuming less memory.
44#
發(fā)表于 2025-3-29 06:21:53 | 只看該作者
45#
發(fā)表于 2025-3-29 08:57:00 | 只看該作者
46#
發(fā)表于 2025-3-29 12:33:14 | 只看該作者
47#
發(fā)表于 2025-3-29 16:31:45 | 只看該作者
SLiDE: Self-supervised LiDAR De-snowing Through Reconstruction Difficulty,ow points without any label. Our method achieves the state-of-the-art performance among label-free approaches and is comparable to the fully-supervised method. Moreover, we demonstrate that our method can be exploited as a pretext task to improve label-efficiency of supervised training of de-snowing
48#
發(fā)表于 2025-3-29 23:39:49 | 只看該作者
,Generative Meta-Adversarial Network for?Unseen Object Navigation,enerator and an environmental meta discriminator, aiming to generate features for unseen objects and new environments in two steps. The former generates the initial features of the unseen objects based on the semantic embedding of the object category. The latter enables the generator to further lear
49#
發(fā)表于 2025-3-30 02:04:32 | 只看該作者
,Object Manipulation via?Visual Target Localization,tor, and our analysis shows that our agent is robust to noise in depth perception and agent localization. Importantly, our proposed approach relaxes several assumptions about idealized localization and perception that are commonly employed by recent works in navigation and manipulation – an importan
50#
發(fā)表于 2025-3-30 06:09:59 | 只看該作者
Inflation and Financial Systems,ter and inter-proposal separation, ...., sharpening the discriminativeness of proposal representations across semantic classes and object instances. The generalizability and transferability of . are verified on various 3D detectors (...., PV-RCNN, CenterPoint, PointPillars and PointRCNN) and dataset
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涡阳县| 绥芬河市| 呼和浩特市| 监利县| 汤阴县| 马尔康县| 金山区| 梓潼县| 高清| 南乐县| 遵化市| 青阳县| 任丘市| 樟树市| 台湾省| 桐庐县| 西乡县| 镇安县| 云浮市| 金堂县| 万荣县| 林西县| 伊宁市| 靖远县| 东乡族自治县| 冷水江市| 璧山县| 平潭县| 大渡口区| 淮南市| 澄迈县| 怀柔区| 高密市| 临西县| 伊川县| 阿图什市| 怀仁县| 城口县| 海安县| 台前县| 霍山县|