找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復制鏈接]
樓主: 租期
31#
發(fā)表于 2025-3-26 22:04:55 | 只看該作者
32#
發(fā)表于 2025-3-27 03:27:57 | 只看該作者
33#
發(fā)表于 2025-3-27 05:24:03 | 只看該作者
SpatialDETR: Robust Scalable Transformer-Based 3D Object Detection From Multi-view Camera Images Wixploits arbitrary receptive fields to integrate cross-sensor data and therefore global context. Extensive experiments on the nuScenes benchmark demonstrate the potential of global attention and result in state-of-the-art performance. Code available at ..
34#
發(fā)表于 2025-3-27 13:03:36 | 只看該作者
35#
發(fā)表于 2025-3-27 14:39:20 | 只看該作者
,PreTraM: Self-supervised Pre-training via?Connecting Trajectory and?Map,ctories and maps to a shared embedding space with cross-modal contrastive learning, 2) Map Contrastive Learning, where we enhance map representation with contrastive learning on large quantities of HD-maps. On top of popular baselines such as AgentFormer and Trajectron++, PreTraM reduces their error
36#
發(fā)表于 2025-3-27 20:36:46 | 只看該作者
,Master of?All: Simultaneous Generalization of?Urban-Scene Segmentation to?, Adverse Weather Conditi, given a pre-trained model and its parameters, . enforces edge consistency prior at the inference stage and updates the model based on (a) a single test sample at a time (.), or (b) continuously for the whole test domain (.). Not only the target data, . also does not need access to the source data
37#
發(fā)表于 2025-3-28 01:28:15 | 只看該作者
,LESS: Label-Efficient Semantic Segmentation for?LiDAR Point Clouds,g step, we leverage prototype learning to get more descriptive point embeddings and use multi-scan distillation to exploit richer semantics from temporally aggregated point clouds to boost the performance of single-scan models. Evaluated on the SemanticKITTI and the nuScenes datasets, we show that o
38#
發(fā)表于 2025-3-28 02:08:13 | 只看該作者
,Visual Cross-View Metric Localization with?Dense Uncertainty Estimates,e compare against a state-of-the-art regression baseline that uses global image descriptors. Quantitative and qualitative experimental results on the recently proposed VIGOR and the Oxford RobotCar datasets validate our design. The produced probabilities are correlated with localization accuracy, an
39#
發(fā)表于 2025-3-28 09:17:41 | 只看該作者
40#
發(fā)表于 2025-3-28 13:08:10 | 只看該作者
,DevNet: Self-supervised Monocular Depth Learning via?Density Volume Construction,sponding rays. During the training process, novel regularization strategies and loss functions are introduced to mitigate photometric ambiguities and overfitting. Without obviously enlarging model parameters size or running time, DevNet outperforms several representative baselines on both the KITTI-
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
广安市| 蓬溪县| 海口市| 镇雄县| 两当县| 桐柏县| 报价| 西盟| 张家川| 景宁| 宜宾县| 深圳市| 望江县| 新干县| 广西| 陈巴尔虎旗| 平乡县| 永州市| 竹北市| 沛县| 宜宾市| 聂拉木县| 突泉县| 铁岭县| 英山县| 遂溪县| 广汉市| 韩城市| 尉犁县| 安泽县| 饶河县| 桐庐县| 安达市| 图木舒克市| 津市市| 汕尾市| 浮山县| 修文县| 梓潼县| 当涂县| 元朗区|