找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2020 Workshops; Glasgow, UK, August Adrien Bartoli,Andrea Fusiello Conference proceedings 2020 Springer Nature Swit

[復(fù)制鏈接]
樓主: HBA1C
41#
發(fā)表于 2025-3-28 17:59:50 | 只看該作者
AIM 2020 Challenge on Efficient Super-Resolution: Methods and Resultsask was to super-resolve an input image with a magnification factor .4 based on a set of prior examples of low and corresponding high resolution images. The goal is to devise a network that reduces one or several aspects such as runtime, parameter count, FLOPs, activations, and memory consumption wh
42#
發(fā)表于 2025-3-28 20:14:45 | 只看該作者
43#
發(fā)表于 2025-3-29 02:54:20 | 只看該作者
Efficient Image Super-Resolution Using Pixel Attentionretty concise and effective network with a newly proposed pixel attention scheme. Pixel attention (PA) is similar as channel attention and spatial attention in formulation. The difference is that PA produces 3D attention maps instead of a 1D attention vector or a 2D map. This attention scheme introd
44#
發(fā)表于 2025-3-29 04:02:51 | 只看該作者
LarvaNet: Hierarchical Super-Resolution via Multi-exit Architectureoften difficult to apply them in resource-constrained environments due to the requirement of heavy computation and huge storage capacity. To address this issue, we propose an efficient network model for SR, called LarvaNet. First, we investigate a number of architectural factors for a baseline model
45#
發(fā)表于 2025-3-29 07:33:26 | 只看該作者
46#
發(fā)表于 2025-3-29 12:35:06 | 只看該作者
Multi-attention Based Ultra Lightweight Image Super-Resolutionthods with remarkable performance, but their memory and computational cost are hindrances in practical usage. To tackle this problem, we propose a Multi-Attentive Feature Fusion Super-Resolution Network (MAFFSRN). MAFFSRN consists of proposed feature fusion groups (FFGs) that serve as a feature extr
47#
發(fā)表于 2025-3-29 16:32:13 | 只看該作者
48#
發(fā)表于 2025-3-29 21:00:35 | 只看該作者
IdleSR: Efficient Super-Resolution Network with Multi-scale IdleBlocksire high computational and memory resources beyond the capability of most mobile and embedded devices. How to significantly reduce the number of operations and parameters while maintaining the performance is a meaningful and challenging problem. To address this problem, we propose an efficient super
49#
發(fā)表于 2025-3-30 03:55:29 | 只看該作者
50#
發(fā)表于 2025-3-30 06:05:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南康市| 绥宁县| 施甸县| 西贡区| 曲阳县| 翁牛特旗| 阿克苏市| 沾化县| 贡山| 潮州市| 海淀区| 兰考县| 文山县| 文化| 井冈山市| 江华| 崇阳县| 游戏| 宝坻区| 遵化市| 北宁市| 仙桃市| 卢湾区| 信阳市| 大渡口区| 台湾省| 隆德县| 华容县| 邵武市| 普兰县| 策勒县| 资源县| 临颍县| 古田县| 咸宁市| 巢湖市| 陵水| 于田县| 沙洋县| 淮南市| 周宁县|