找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[復(fù)制鏈接]
樓主: Confer
41#
發(fā)表于 2025-3-28 16:42:15 | 只看該作者
42#
發(fā)表于 2025-3-28 21:18:54 | 只看該作者
43#
發(fā)表于 2025-3-29 01:26:20 | 只看該作者
44#
發(fā)表于 2025-3-29 05:56:06 | 只看該作者
45#
發(fā)表于 2025-3-29 08:41:01 | 只看該作者
46#
發(fā)表于 2025-3-29 14:52:14 | 只看該作者
Deep Image Clustering with Category-Style Representation, propose a novel deep image clustering framework to learn a category-style latent representation in which the category information is disentangled from image style and can be directly used as the cluster assignment. To achieve this goal, mutual information maximization is applied to embed relevant i
47#
發(fā)表于 2025-3-29 17:42:25 | 只看該作者
48#
發(fā)表于 2025-3-29 22:16:18 | 只看該作者
Improving Monocular Depth Estimation by Leveraging Structural Awareness and Complementary Datasets,tructural information exploitation, which leads to inaccurate spatial layout, discontinuous surface, and ambiguous boundaries. In this paper, we tackle this problem in three aspects. First, to exploit the spatial relationship of visual features, we propose a structure-aware neural network with spati
49#
發(fā)表于 2025-3-30 01:19:23 | 只看該作者
BMBC: Bilateral Motion Estimation with Bilateral Cost Volume for Video Interpolation,se a novel deep-learning-based video interpolation algorithm based on bilateral motion estimation. First, we develop the bilateral motion network with the bilateral cost volume to estimate bilateral motions accurately. Then, we approximate bi-directional motions to predict a different kind of bilate
50#
發(fā)表于 2025-3-30 08:05:16 | 只看該作者
Hard Negative Examples are Hard, but Useful,ser together in an embedding space than representations of images from different classes. Much work on triplet losses focuses on selecting the most useful triplets of images to consider, with strategies that select dissimilar examples from the same class or similar examples from different classes. T
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴楚县| 蒙自县| 交城县| 利辛县| 延津县| 孟津县| 伊春市| 临江市| 六盘水市| 阳春市| 镇平县| 和政县| 平果县| 沙田区| 岑溪市| 永康市| 绥江县| 娄烦县| 若尔盖县| 东台市| 郁南县| 肥乡县| 香港 | 长寿区| 清原| 淮南市| 嘉兴市| 兴业县| 汶川县| 琼中| 太湖县| 平阴县| 高州市| 民丰县| 安陆市| 龙陵县| 红原县| 公安县| 施秉县| 屏东市| 甘孜|