找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[復(fù)制鏈接]
樓主: Confer
11#
發(fā)表于 2025-3-23 10:14:48 | 只看該作者
Chinese Diplomacy in a Changing Worldxtensive experiments performed on THUMOS14 and ActivityNet datasets demonstrate that our proposed method is effective. Specifically, the average mAP of IoU thresholds from 0.1 to 0.9 on the THUMOS14 dataset is significantly improved from 27.9% to 30.0%.
12#
發(fā)表于 2025-3-23 17:07:22 | 只看該作者
13#
發(fā)表于 2025-3-23 19:18:26 | 只看該作者
Chinese Diplomacy in a Changing World, an effective and simple fusion network is proposed for the late fusion stage. In our model, all networks are jointly trained in an end-to-end fashion. Extensive experiments demonstrate that our approach is effective and stable compared with other state-of-the-art methods (Code is available on: .).
14#
發(fā)表于 2025-3-24 00:15:55 | 只看該作者
SipMask: Spatial Information Preservation for Fast Image and Video Instance Segmentation,ge methods. Compared to the state-of-the-art single-stage TensorMask, SipMask obtains an absolute gain of 1.0% (mask AP), while providing a four-fold speedup. In terms of real-time capabilities, SipMask outperforms YOLACT with an absolute gain of 3.0% (mask AP) under similar settings, while operatin
15#
發(fā)表于 2025-3-24 05:48:14 | 只看該作者
SemanticAdv: Generating Adversarial Examples via Attribute-Conditioned Image Editing,ability of . on both face recognition and general street-view images to show its generalization. We believe that our work can shed light on further understanding about vulnerabilities of DNNs as well as novel defense approaches. Our implementation is available at ..
16#
發(fā)表于 2025-3-24 06:41:25 | 只看該作者
Learning with Noisy Class Labels for Instance Segmentation,d-background sub-task. Extensive experiments conducted with three popular datasets (i.e., Pascal VOC, Cityscapes and COCO) have demonstrated the effectiveness of our method in a wide range of noisy class labels scenarios. Code will be available at: ..
17#
發(fā)表于 2025-3-24 10:41:27 | 只看該作者
Self-supervised Motion Representation via Scattering Local Motion Cues,he effectiveness of our proposed motion representation method on downstream video understanding tasks, ...., action recognition task. Experimental results show that our method performs favorably against state-of-the-art methods.
18#
發(fā)表于 2025-3-24 17:02:36 | 只看該作者
19#
發(fā)表于 2025-3-24 22:45:41 | 只看該作者
Hard Negative Examples are Hard, but Useful,hard negative examples becomes feasible. This leads to more generalizable features, and image retrieval results that outperform state of the art for datasets with high intra-class variance. Code is available at: .
20#
發(fā)表于 2025-3-24 23:16:36 | 只看該作者
ReActNet: Towards Precise Binary Neural Network with Generalized Activation Functions,unctions, to enable explicit learning of the distribution reshape and shift at near-zero extra cost. Lastly, we adopt a distributional loss to further enforce the binary network to learn similar output distributions as those of a real-valued network. We show that after incorporating all these ideas,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郎溪县| 蓬安县| 习水县| 宜丰县| 鄂尔多斯市| 酒泉市| 钟山县| 淮北市| 辽中县| 莱芜市| 兖州市| 博乐市| 务川| 红河县| 郧西县| 仁怀市| 公主岭市| 天津市| 土默特左旗| 林甸县| 华宁县| 汤阴县| 芷江| 鄱阳县| 健康| 舒兰市| 平乐县| 广灵县| 浏阳市| 阿拉善盟| 定兴县| 彭州市| 永清县| 平乐县| 巴塘县| 辽阳市| 会昌县| 广南县| 河北省| 昆山市| 息烽县|