找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[復(fù)制鏈接]
查看: 34818|回復(fù): 65
樓主
發(fā)表于 2025-3-21 19:28:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computer Vision – ECCV 2020
副標(biāo)題16th European Confer
編輯Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm
視頻videohttp://file.papertrans.cn/235/234209/234209.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur
描述The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic..The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation..?..?.
出版日期Conference proceedings 2020
關(guān)鍵詞computer networks; computer vision; data security; databases; face recognition; Human-Computer Interactio
版次1
doihttps://doi.org/10.1007/978-3-030-58568-6
isbn_softcover978-3-030-58567-9
isbn_ebook978-3-030-58568-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Computer Vision – ECCV 2020影響因子(影響力)




書目名稱Computer Vision – ECCV 2020影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ECCV 2020網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ECCV 2020網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ECCV 2020被引頻次




書目名稱Computer Vision – ECCV 2020被引頻次學(xué)科排名




書目名稱Computer Vision – ECCV 2020年度引用




書目名稱Computer Vision – ECCV 2020年度引用學(xué)科排名




書目名稱Computer Vision – ECCV 2020讀者反饋




書目名稱Computer Vision – ECCV 2020讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:59:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:14:54 | 只看該作者
Marek Dabrowski,Jacek Rostowskid-background sub-task. Extensive experiments conducted with three popular datasets (i.e., Pascal VOC, Cityscapes and COCO) have demonstrated the effectiveness of our method in a wide range of noisy class labels scenarios. Code will be available at: ..
地板
發(fā)表于 2025-3-22 08:10:18 | 只看該作者
Uneven Growth in a Monetary Union,he effectiveness of our proposed motion representation method on downstream video understanding tasks, ...., action recognition task. Experimental results show that our method performs favorably against state-of-the-art methods.
5#
發(fā)表于 2025-3-22 12:46:59 | 只看該作者
6#
發(fā)表于 2025-3-22 16:06:45 | 只看該作者
Life, Hardship and Death at the Front,hard negative examples becomes feasible. This leads to more generalizable features, and image retrieval results that outperform state of the art for datasets with high intra-class variance. Code is available at: .
7#
發(fā)表于 2025-3-22 19:57:43 | 只看該作者
8#
發(fā)表于 2025-3-22 23:24:36 | 只看該作者
Paola Malanotte-Rizzoli,Valery N. Eremeevose loss functions that carefully integrate partial but correct annotations with complementary but noisy pseudo labels. Evaluation in the proposed novel setting requires full annotation on the test set. We collect the required annotations (Project page: . This work was part of Xiangyun Zhao’s intern
9#
發(fā)表于 2025-3-23 05:18:53 | 只看該作者
10#
發(fā)表于 2025-3-23 06:39:03 | 只看該作者
Xing Xu,Helena Hing Wa Sit,Shen Chene: one synthesizes features of unseen classes/categories, while the other optimizes the embedding and performs the cross-modal alignment on the common embedding space. Specifically, two different types of generative adversarial networks learn collaboratively throughout the training process and the i
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华池县| 太原市| 德惠市| 田东县| 亚东县| 贺兰县| 西贡区| 衡山县| 全椒县| 高陵县| 博客| 县级市| 天门市| 大城县| 大丰市| 龙岩市| 商城县| 老河口市| 和静县| 浮山县| 武清区| 司法| 江华| 宽城| 同德县| 曲沃县| 岐山县| 沙洋县| 鲁山县| 锦州市| 德昌县| 砀山县| 长治县| 武山县| 镇安县| 武川县| 习水县| 志丹县| 常宁市| 鹤庆县| 新乐市|