找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復(fù)制鏈接]
樓主: Chylomicron
41#
發(fā)表于 2025-3-28 18:25:56 | 只看該作者
42#
發(fā)表于 2025-3-28 20:20:16 | 只看該作者
Ask, Acquire, and Attack: Data-Free UAP Generation Using Class Impressionsversal Adversarial Perturbations (UAP) that can affect inference of the models over most input samples. Given a model, there exist broadly two approaches to craft UAPs: (i) data-driven: that require data, and (ii) data-free: that do not require data samples. Data-driven approaches require actual sam
43#
發(fā)表于 2025-3-29 01:07:33 | 只看該作者
Rendering Portraitures from Monocular Camera and Beyondertain photography skills to generate such effects. Recently, dual-lens on cellphones is used to estimate scene depth and simulate DoF effects for portrait shots. However, this technique cannot be applied to photos already taken and does not work well for whole-body scenes where the subject is at a
44#
發(fā)表于 2025-3-29 06:25:37 | 只看該作者
45#
發(fā)表于 2025-3-29 08:08:31 | 只看該作者
A Scalable Exemplar-Based Subspace Clustering Algorithm for Class-Imbalanced Datahave become a popular tool for unsupervised learning due to their empirical success and theoretical guarantees. However, their performance can be affected by imbalanced data distributions and large-scale datasets. This paper presents an exemplar-based subspace clustering method to tackle the problem
46#
發(fā)表于 2025-3-29 14:38:44 | 只看該作者
RCAA: Relational Context-Aware Agents for Person Searchious approaches to this problem have relied on a pedestrian proposal net, which may generate redundant proposals and increase the computational burden. In this paper, we address this problem by training relational context-aware agents which learn the actions to localize the target person from the ga
47#
發(fā)表于 2025-3-29 16:06:04 | 只看該作者
48#
發(fā)表于 2025-3-29 22:02:02 | 只看該作者
Face Recognition with Contrastive Convolutionure extraction. For both faces the same kernels are applied and hence the representation of a face stays fixed regardless of whom it is compared with. As for us humans, however, one generally focuses on varied characteristics of a face when comparing it with distinct persons as shown in Fig.?.. Insp
49#
發(fā)表于 2025-3-30 03:58:05 | 只看該作者
Adding Attentiveness to the Neurons in Recurrent Neural NetworksRNN neurons mainly focus on controlling the contributions of current and historical information but do not explore the different importance levels of different elements in an input vector of a time slot. We propose adding a simple yet effective Element-wise-Attention Gate (EleAttG) to an RNN block (
50#
發(fā)表于 2025-3-30 05:59:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 02:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄龙县| 普定县| 长白| 乾安县| 包头市| 乡城县| 政和县| 南木林县| 临江市| 宿州市| 昌江| 中卫市| 天峻县| 讷河市| 武汉市| 宁城县| 昔阳县| 正定县| 盐山县| 湾仔区| 三台县| 宁河县| 鱼台县| 安阳市| 遵义市| 祁门县| 兴化市| 镇沅| 大理市| 韶关市| 贵港市| 潢川县| 库车县| 安义县| 怀集县| 仙居县| 石家庄市| 银川市| 昂仁县| 饶平县| 留坝县|