找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復(fù)制鏈接]
樓主: Chylomicron
11#
發(fā)表于 2025-3-23 11:50:24 | 只看該作者
Reverse Attention for Salient Object Detection parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (.) and model size (.).
12#
發(fā)表于 2025-3-23 17:27:48 | 只看該作者
13#
發(fā)表于 2025-3-23 18:03:38 | 只看該作者
Alexander Antonov,Thomas Hoffmann problem of uncalibrated photometric stereo. Extensive experiments on public real datasets show that PS-FCN outperforms existing approaches in calibrated photometric stereo, and promising results are achieved in uncalibrated scenario, clearly demonstrating its effectiveness.
14#
發(fā)表于 2025-3-24 00:47:29 | 只看該作者
New Perspectives in German Political Studiesodel is a generic representation (in the input space) of the samples belonging to that category. Further, we present a neural network based generative model that utilizes the acquired class impressions to learn crafting UAPs. Experimental evaluation demonstrates that the learned generative model, (i
15#
發(fā)表于 2025-3-24 04:57:02 | 只看該作者
16#
發(fā)表于 2025-3-24 08:47:06 | 只看該作者
https://doi.org/10.1007/978-3-319-93470-9that improve task performance are zoomed and exaggerated. Unlike alternative approaches such as spatial transformer networks, our proposed layer is inspired by image saliency, computed efficiently from uniformly downsampled data, and degrades gracefully to a uniform sampling strategy under uncertain
17#
發(fā)表于 2025-3-24 13:54:15 | 只看該作者
https://doi.org/10.1007/978-3-319-93470-9 from each subspace for expressing all data points even if the data are imbalanced. Our experiments demonstrate that the proposed method outperforms state-of-the-art subspace clustering methods in two large-scale image datasets that are imbalanced. We also demonstrate the effectiveness of our method
18#
發(fā)表于 2025-3-24 16:58:39 | 只看該作者
New Perspectives in German Political Studiesch, we conduct extensive experiments on the large-scale Person Search benchmark dataset and achieve significant improvements over the compared approaches. It is also worth noting that the proposed model even performs better than traditional methods with perfect pedestrian detectors.
19#
發(fā)表于 2025-3-24 19:53:45 | 只看該作者
Palgrave Studies in European Union Politicsorm incremental learning, which can effectively transfer the general embedding to the current video domain. In addition, we extend the proposed approach for long-term tracking by introducing a simple yet effective local-to-global search region strategy. Extensive experiments on benchmarks show that
20#
發(fā)表于 2025-3-25 03:13:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 04:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米易县| 德钦县| 苗栗县| 富顺县| 沅陵县| 浦东新区| 左权县| 陵水| 龙海市| 齐河县| 古蔺县| 台北市| 肇源县| 宁化县| 新巴尔虎左旗| 祁门县| 玉环县| 宿州市| 射阳县| 额济纳旗| 辰溪县| 顺昌县| 青龙| 罗定市| 郑州市| 桦甸市| 香港 | 榆中县| 如东县| 平武县| 乐亭县| 秭归县| 拜城县| 阳高县| 大埔县| 凤庆县| 青海省| 富蕴县| 浑源县| 乌审旗| 全椒县|