找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復制鏈接]
樓主: 馬用
31#
發(fā)表于 2025-3-26 21:09:12 | 只看該作者
Semi-dense 3D Reconstruction with a Stereo Event Camerahas no special requirements on either the motion of the stereo event-camera rig or on prior knowledge about the scene. Experiments demonstrate our method can deal with both texture-rich scenes as well as sparse scenes, outperforming state-of-the-art stereo methods based on event data image representations.
32#
發(fā)表于 2025-3-27 02:16:49 | 只看該作者
Conference proceedings 2018, ECCV 2018, held in Munich, Germany, in September 2018..The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical?sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstructi
33#
發(fā)表于 2025-3-27 09:15:39 | 只看該作者
34#
發(fā)表于 2025-3-27 12:47:39 | 只看該作者
35#
發(fā)表于 2025-3-27 13:48:47 | 只看該作者
Diverse Image-to-Image Translation via Disentangled Representationsy reduces mode collapse. To handle unpaired training data, we introduce a novel cross-cycle consistency loss. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks. We validate the effectiveness of our approach through extensive evaluation.
36#
發(fā)表于 2025-3-27 21:00:15 | 只看該作者
37#
發(fā)表于 2025-3-28 00:00:09 | 只看該作者
Convolutional Networks with Adaptive Inference Graphsove directly to a layer that can distinguish fine-grained differences? Currently, a network would first need to execute sometimes hundreds of intermediate layers that specialize in unrelated aspects. Ideally, the more a network already knows about an image, the better it should be at deciding which
38#
發(fā)表于 2025-3-28 03:24:25 | 只看該作者
Progressive Neural Architecture Search based on reinforcement learning and evolutionary algorithms. Our approach uses a sequential model-based optimization (SMBO) strategy, in which we search for structures in order of increasing complexity, while simultaneously learning a surrogate model to guide the search through structure space. Dir
39#
發(fā)表于 2025-3-28 07:39:19 | 只看該作者
40#
發(fā)表于 2025-3-28 12:07:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
滦南县| 宽甸| 白沙| 日土县| 福海县| 营山县| 枣强县| 兰州市| 郎溪县| 江安县| 京山县| 南投市| 陕西省| 天全县| 长葛市| 高邮市| 阿合奇县| 察隅县| 南安市| 神木县| 光山县| 克东县| 平武县| 泗洪县| 观塘区| 宜阳县| 青海省| 桓台县| 金川县| 新营市| 斗六市| 林甸县| 成都市| 黄骅市| 婺源县| 江门市| 平遥县| 庆元县| 广东省| 惠安县| 南京市|