找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復(fù)制鏈接]
查看: 15003|回復(fù): 58
樓主
發(fā)表于 2025-3-21 19:20:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computer Vision – ECCV 2018
副標(biāo)題15th European Confer
編輯Vittorio Ferrari,Martial Hebert,Yair Weiss
視頻videohttp://file.papertrans.cn/235/234188/234188.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw
描述The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018..The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical?sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization;?matching and recognition; video attention; and poster sessions..
出版日期Conference proceedings 2018
關(guān)鍵詞computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; imag
版次1
doihttps://doi.org/10.1007/978-3-030-01246-5
isbn_softcover978-3-030-01245-8
isbn_ebook978-3-030-01246-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Computer Vision – ECCV 2018影響因子(影響力)




書目名稱Computer Vision – ECCV 2018影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ECCV 2018網(wǎng)絡(luò)公開(kāi)度




書目名稱Computer Vision – ECCV 2018網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Computer Vision – ECCV 2018被引頻次




書目名稱Computer Vision – ECCV 2018被引頻次學(xué)科排名




書目名稱Computer Vision – ECCV 2018年度引用




書目名稱Computer Vision – ECCV 2018年度引用學(xué)科排名




書目名稱Computer Vision – ECCV 2018讀者反饋




書目名稱Computer Vision – ECCV 2018讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:11:33 | 只看該作者
International and Development Educationlearning with . complementary labels: (1) It estimates transition probabilities with no bias. (2) It provides a general method to modify traditional loss functions and extends standard deep neural network classifiers to learn with biased complementary labels. (3) It theoretically ensures that the cl
板凳
發(fā)表于 2025-3-22 02:03:22 | 只看該作者
Managing through industry fusionWe demonstrate that these operators can also be used to improve approaches such as Mask RCNN, demonstrating better segmentation of complex biological shapes and PASCAL VOC categories than achievable by Mask RCNN alone.
地板
發(fā)表于 2025-3-22 08:20:54 | 只看該作者
Managing through industry fusionect Interaction dataset and NTU RGB+D dataset and verify the effectiveness of each network of our model. The comparison results illustrate that our approach achieves much better results than the state-of-the-art methods.
5#
發(fā)表于 2025-3-22 11:25:11 | 只看該作者
6#
發(fā)表于 2025-3-22 13:54:53 | 只看該作者
Case Two: J Lauritzen Ship Owners,s and attributes. We validate our approach on two challenging datasets and demonstrate significant improvements over the state of the art. In addition, we show that not only can our model recognize unseen compositions robustly in an open-world setting, it can also generalize to compositions where ob
7#
發(fā)表于 2025-3-22 20:12:41 | 只看該作者
https://doi.org/10.1007/978-3-319-89836-0mpact and highly concentrated hash codes to enable efficient and effective Hamming space retrieval. The main idea is to penalize significantly on similar cross-modal pairs with Hamming distance larger than the Hamming radius threshold, by designing a pairwise focal loss based on the exponential dist
8#
發(fā)表于 2025-3-22 22:59:59 | 只看該作者
9#
發(fā)表于 2025-3-23 02:18:17 | 只看該作者
Convolutional Networks with Adaptive Inference Graphsies. Both ConvNet-AIG with 50 and 101 layers outperform their ResNet counterpart, while using . and . less computations respectively. By grouping parameters into layers for related classes and only executing relevant layers, ConvNet-AIG improves both efficiency and overall classification quality. La
10#
發(fā)表于 2025-3-23 09:35:43 | 只看該作者
Learning with Biased Complementary Labelslearning with . complementary labels: (1) It estimates transition probabilities with no bias. (2) It provides a general method to modify traditional loss functions and extends standard deep neural network classifiers to learn with biased complementary labels. (3) It theoretically ensures that the cl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荔浦县| 张家界市| 观塘区| 周口市| 买车| 那曲县| 拜城县| 邯郸市| 鄱阳县| 沽源县| 湄潭县| 孝昌县| 额济纳旗| 建阳市| 监利县| 昭通市| 田阳县| 禄丰县| 凭祥市| 万州区| 虎林市| 景宁| 屯昌县| 集安市| 鄯善县| 广水市| 丰县| 奉节县| 广西| 青阳县| 仲巴县| 郓城县| 安国市| 深圳市| 诸暨市| 旺苍县| 洞头县| 华池县| 贵港市| 长泰县| 正安县|