找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi

[復(fù)制鏈接]
樓主: 太平間
31#
發(fā)表于 2025-3-27 00:37:19 | 只看該作者
0302-9743 , Japan, in November/ December 2020.*.The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics:..Part I: 3D computer vision; segmentation and grouping..Part II: low-level vision, i
32#
發(fā)表于 2025-3-27 01:32:21 | 只看該作者
33#
發(fā)表于 2025-3-27 07:10:50 | 只看該作者
https://doi.org/10.1007/978-3-319-26047-1iate layers. In this way, GFFRB can enjoy the merits of the lightweight of the group convolution and the high-efficiency of the skip connections, thus achieving better performance compared with most current residual blocks. Experiments on the benchmark test sets show that our models are more efficient than most of the state-of-the-art methods.
34#
發(fā)表于 2025-3-27 11:28:23 | 只看該作者
Accurate and Efficient Single Image Super-Resolution with Matrix Channel Attention NetworkCAB). Several models of different sizes are released to meet various practical requirements. Extensive benchmark experiments show that the proposed models achieve better performance with much fewer multiply-adds and parameters (Source code is at .).
35#
發(fā)表于 2025-3-27 17:19:25 | 只看該作者
An Efficient Group Feature Fusion Residual Network for Image Super-Resolutioniate layers. In this way, GFFRB can enjoy the merits of the lightweight of the group convolution and the high-efficiency of the skip connections, thus achieving better performance compared with most current residual blocks. Experiments on the benchmark test sets show that our models are more efficient than most of the state-of-the-art methods.
36#
發(fā)表于 2025-3-27 18:50:42 | 只看該作者
37#
發(fā)表于 2025-3-27 23:53:51 | 只看該作者
38#
發(fā)表于 2025-3-28 04:48:30 | 只看該作者
https://doi.org/10.1007/978-1-349-03555-7ith non-stationary textures remains a challenging task for computer vision. In this paper, a novel approach to image inpainting problem is presented, which adapts exemplar-based methods for deep convolutional neural networks. The concept of . is introduced with the purpose of preserving feature cont
39#
發(fā)表于 2025-3-28 07:38:33 | 只看該作者
40#
發(fā)表于 2025-3-28 10:41:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 20:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台东县| 株洲市| 晋江市| 化德县| 鄄城县| 凌源市| 改则县| 田阳县| 介休市| 甘德县| 海伦市| 延安市| 江都市| 贡觉县| 和龙市| 黄平县| 桦南县| 封开县| 华蓥市| 江城| 天镇县| 沾化县| 建瓯市| 上高县| 荆门市| 绥宁县| 马鞍山市| 平利县| 山丹县| 蓬安县| 安化县| 呼和浩特市| 明光市| 绥芬河市| 文水县| 淳化县| 清丰县| 黄骅市| 宜都市| 荃湾区| 全椒县|