找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi

[復制鏈接]
樓主: 太平間
21#
發(fā)表于 2025-3-25 07:22:55 | 只看該作者
22#
發(fā)表于 2025-3-25 11:02:01 | 只看該作者
23#
發(fā)表于 2025-3-25 12:21:24 | 只看該作者
24#
發(fā)表于 2025-3-25 17:15:48 | 只看該作者
25#
發(fā)表于 2025-3-25 21:02:03 | 只看該作者
https://doi.org/10.1007/978-3-662-65102-5 network. Experimental results on large-scale dataset demonstrate the effectiveness of the proposed model against the state-of-the-art (SOTA) SR methods. Notably, when parameters are less than 320k, A.F outperforms SOTA methods for all scales, which proves its ability to better utilize the auxiliary features. Codes are available at ..
26#
發(fā)表于 2025-3-26 03:21:39 | 只看該作者
Image Inpainting with Onion Convolutions an efficient implementation. As qualitative and quantitative comparisons show, our method with onion convolutions outperforms state-of-the-art methods by producing more realistic, visually plausible and semantically coherent results.
27#
發(fā)表于 2025-3-26 06:37:23 | 只看該作者
CS-MCNet: A Video Compressive Sensing Reconstruction Network with Interpretable Motion Compensationo . better than state-of-the-art methods. In addition, due to the feed-forward architecture, the reconstruction can be processed by our network in real time and up?to three orders of magnitude faster than traditional iterative methods.
28#
發(fā)表于 2025-3-26 09:16:35 | 只看該作者
Restoring Spatially-Heterogeneous Distortions Using Mixture of Experts Networkresentations. Our model is effective for restoring real-world distortions and we experimentally verify that our method outperforms other models designed to manage both single distortion and multiple distortions.
29#
發(fā)表于 2025-3-26 15:03:47 | 只看該作者
Overwater Image Dehazing via Cycle-Consistent Generative Adversarial Networklf-supervision and a perceptual loss for content preservation. In addition to qualitative evaluation, we design an image quality assessment network to rank the dehazed images. Experimental results on both real and synthetic test data demonstrate that the proposed method performs superiorly against several state-of-the-art land dehazing methods.
30#
發(fā)表于 2025-3-26 17:08:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 20:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
罗城| 新源县| 崇明县| 乌兰县| 宝坻区| 台东市| 曲麻莱县| 璧山县| 股票| 连山| 锦屏县| 红原县| 灵山县| 福鼎市| 农安县| 科技| 岚皋县| 延吉市| 罗源县| 长沙县| 工布江达县| 百色市| 巴东县| 垣曲县| 孝感市| 禄丰县| 新巴尔虎左旗| 乐业县| 张家界市| 东丰县| 汪清县| 喀喇沁旗| 封丘县| 潜江市| 沂水县| 河南省| 钦州市| 集贤县| 兴隆县| 潜山县| 柏乡县|