找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C. V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Sw

[復制鏈接]
樓主: endocarditis
41#
發(fā)表于 2025-3-28 18:13:33 | 只看該作者
42#
發(fā)表于 2025-3-28 19:58:50 | 只看該作者
Learning Image-to-Image Translation Using Paired and Unpaired Training Samplessufficient training data. Traditionally different approaches have been proposed depending on whether aligned image pairs or two sets of (unaligned) examples from both domains are available for training. While paired training samples might be difficult to obtain, the unpaired setup leads to a highly
43#
發(fā)表于 2025-3-28 23:44:14 | 只看該作者
44#
發(fā)表于 2025-3-29 04:30:56 | 只看該作者
Cross-Spectral Image Patch Matching by Learning Features of the Spatially Connected Patches in a Shams. We consider cross-spectral image patches can be matched because there exists a shared semantic feature space among them, in which the semantic features from different spectral images will be more independent of the spectral domains. To learn this shared feature space, we propose a progressive co
45#
發(fā)表于 2025-3-29 09:46:02 | 只看該作者
Semantic Segmentation Refinement by Monte Carlo Region Growing of High Confidence Detectionsonnected conditional random fields (CRFs) can significantly refine segmentation predictions. However, they rely on supervised parameter optimization that depends upon specific datasets and predictor modules. We propose an unsupervised method for semantic segmentation refinement that takes as input t
46#
發(fā)表于 2025-3-29 12:38:10 | 只看該作者
A Deep Blind Image Quality Assessment with Visual Importance Based Patch Scorelution is splitting the training image into patches, assigning each patch the quality score, while the assignment of patch score is not consistent with the human visual system (HVS) well. To address the problem, we propose a patch quality assignment strategy, introducing the weighting map to describ
47#
發(fā)表于 2025-3-29 15:47:20 | 只看該作者
48#
發(fā)表于 2025-3-29 19:48:04 | 只看該作者
49#
發(fā)表于 2025-3-29 23:55:16 | 只看該作者
SAFE: Scale Aware Feature Encoder for Scene Text Recognitionoder (SAFE) that is designed specifically for encoding characters with different scales. SAFE is composed of a multi-scale convolutional encoder and a scale attention network. The multi-scale convolutional encoder targets at extracting character features under multiple scales, and the scale attentio
50#
發(fā)表于 2025-3-30 07:17:01 | 只看該作者
Neural Abstract Style Transfer for Chinese Traditional Paintingtically appealing. Compared with western artistic painting, it is usually more visually abstract and textureless. Recently, neural network based style transfer methods have shown promising and appealing results which are mainly focused on western painting. It remains a challenging problem to preserv
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 08:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
双鸭山市| 禹州市| 赫章县| 达州市| 泗阳县| 四会市| 柘城县| 信丰县| 保定市| 铜梁县| 怀来县| 成都市| 历史| 武乡县| 金寨县| 团风县| 丹凤县| 新沂市| 修武县| 伊川县| 普定县| 洛浦县| 霍城县| 辛集市| 巴林右旗| 邢台市| 沁源县| 达日县| 工布江达县| 萨嘎县| 永德县| 凤庆县| 长汀县| 岢岚县| 永川市| 弥渡县| 龙川县| 苏州市| 天等县| 齐齐哈尔市| 蛟河市|