找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C. V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Sw

[復(fù)制鏈接]
樓主: endocarditis
31#
發(fā)表于 2025-3-26 21:52:37 | 只看該作者
Learning Image-to-Image Translation Using Paired and Unpaired Training Samplesvely improved results. Our model outperforms the baselines also in the case of purely paired and unpaired training data. To our knowledge, this is the first work to consider such hybrid setup in image-to-image translation.
32#
發(fā)表于 2025-3-27 04:54:26 | 只看該作者
33#
發(fā)表于 2025-3-27 06:57:56 | 只看該作者
Aligning Salient Objects to Queries: A Multi-modal and Multi-object Image Retrieval Frameworklity of the co-occurrence of different objects in the training set. We validate the performance of our approach on standard single/multi-object datasets, showing state-of-the art performance in every dataset.
34#
發(fā)表于 2025-3-27 12:48:34 | 只看該作者
35#
發(fā)表于 2025-3-27 14:53:59 | 只看該作者
36#
發(fā)表于 2025-3-27 20:49:34 | 只看該作者
Revolutionary Ecological Liberation: he single model trained on four holistic ReID datasets achieves competitive accuracy on these four datasets, as well as outperforms the state-of-the-art methods on two partial ReID datasets without training.
37#
發(fā)表于 2025-3-27 23:11:38 | 只看該作者
38#
發(fā)表于 2025-3-28 04:37:51 | 只看該作者
39#
發(fā)表于 2025-3-28 06:16:44 | 只看該作者
40#
發(fā)表于 2025-3-28 12:45:52 | 只看該作者
SCPNet: Spatial-Channel Parallelism Network for Joint Holistic and Partial Person Re-identificationen occluded by obstacles or other persons in practical scenarios, which makes partial person re-identification non-trivial. In this paper, we propose a spatial-channel parallelism network (SCPNet) in which each channel in the ReID feature pays attention to a given spatial part of the body. The spati
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 08:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
常山县| 古丈县| 深州市| 夹江县| 福建省| 绥阳县| 仁寿县| 乡宁县| 石首市| 明星| 辽中县| 饶河县| 娄底市| 金乡县| 宜城市| 陈巴尔虎旗| 崇义县| 九江市| 新巴尔虎左旗| 阳信县| 海盐县| 万全县| 黄陵县| 黑龙江省| 游戏| 武平县| 碌曲县| 新野县| 武威市| 韶关市| 涿州市| 贵溪市| 深水埗区| 老河口市| 柯坪县| 康平县| 文化| 宁南县| 左贡县| 岳阳市| 三门县|