找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2016 Workshops; ACCV 2016 Internatio Chu-Song Chen,Jiwen Lu,Kai-Kuang Ma Conference proceedings 2017 Springer Intern

[復(fù)制鏈接]
樓主: KEN
31#
發(fā)表于 2025-3-27 00:22:08 | 只看該作者
32#
發(fā)表于 2025-3-27 03:02:24 | 只看該作者
CNN-GRNN for Image Sharpness Assessment machine learning, CNN-GRNN fuses feature extraction and score prediction into an optimization procedure. Experiments on Gaussian blurring images in LIVE, CSIQ, TID2008 and TID2013 show that CNN-GRNN outperforms the state-of-the-art algorithms and gets closer to human subjective judgment.
33#
發(fā)表于 2025-3-27 05:55:23 | 只看該作者
34#
發(fā)表于 2025-3-27 11:23:27 | 只看該作者
35#
發(fā)表于 2025-3-27 16:25:08 | 只看該作者
A Study of Combining Re-coloring and Adding Patterns to Images for Dichromatso add patterns according to the degree of deformation, and then re-color images overlaid with patterns. In the evaluation, we verify effectiveness of combining adding patterns and re-coloring, and demonstrate content-dependent characteristics through the studies based on different types of images and different types of patterns.
36#
發(fā)表于 2025-3-27 20:01:22 | 只看該作者
Emotion Understanding Using Multimodal Information Based on Autobiographical Memories for Alzheimer’icits of AD patients. This work uses novel EEG features based on quaternions, facial landmarks and the combination of them. Their performance was evaluated in a comparative study with a state of the art methods that demonstrates the proposed approach.
37#
發(fā)表于 2025-3-28 00:29:43 | 只看該作者
Blind Image Deblurring Using Elastic-Net Based Rank Priorelastic-net regularization of singular values. We quantitatively verify that it favors clear images over blurred images. This property is able to facilitate the kernel estimation in the conventional maximum a posterior framework. Based on this prior, we develop an efficient optimization method to so
38#
發(fā)表于 2025-3-28 03:57:21 | 只看該作者
39#
發(fā)表于 2025-3-28 09:31:19 | 只看該作者
40#
發(fā)表于 2025-3-28 11:19:28 | 只看該作者
CNN-GRNN for Image Sharpness AssessmentSA) is useful and challenging. In this paper, a shallow convolutional neural network (CNN) is proposed for intrinsic representation of image sharpness and general regression neural network (GRNN) is utilized for precise score prediction. The hybrid CNN-GRNN model tends to build functional relationsh
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苍南县| 仁寿县| 谷城县| 嘉定区| 万盛区| 班玛县| 无极县| 长汀县| 青川县| 景泰县| 长海县| 黎城县| 明溪县| 扬州市| 庆元县| 芜湖县| 新疆| 巴彦淖尔市| 海盐县| 普格县| 昆明市| 黄梅县| 梅河口市| 思茅市| 湖州市| 英山县| 东乡| 乐昌市| 隆子县| 伊通| 京山县| 临澧县| 册亨县| 汉源县| 奎屯市| 庆阳市| 昌都县| 宁河县| 沁水县| 高邑县| 广南县|