找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2016 Workshops; ACCV 2016 Internatio Chu-Song Chen,Jiwen Lu,Kai-Kuang Ma Conference proceedings 2017 Springer Intern

[復(fù)制鏈接]
查看: 43346|回復(fù): 60
樓主
發(fā)表于 2025-3-21 19:51:55 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision – ACCV 2016 Workshops
副標(biāo)題ACCV 2016 Internatio
編輯Chu-Song Chen,Jiwen Lu,Kai-Kuang Ma
視頻videohttp://file.papertrans.cn/235/234119/234119.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ACCV 2016 Workshops; ACCV 2016 Internatio Chu-Song Chen,Jiwen Lu,Kai-Kuang Ma Conference proceedings 2017 Springer Intern
描述The three-volume set, consisting of LNCS 10116, 10117, and 10118, contains carefully reviewed and selected papers presented at 17 workshops held in conjunction with the 13th Asian Conference on Computer Vision, ACCV 2016, in Taipei, Taiwan in November 2016. The 134 full papers presented were selected from 223 submissions. LNCS 10116 contains the papers selected?
出版日期Conference proceedings 2017
關(guān)鍵詞classification; human-machine interaction; image processing; neural network; reinforcement learning
版次1
doihttps://doi.org/10.1007/978-3-319-54407-6
isbn_softcover978-3-319-54406-9
isbn_ebook978-3-319-54407-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Computer Vision – ACCV 2016 Workshops影響因子(影響力)




書目名稱Computer Vision – ACCV 2016 Workshops影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ACCV 2016 Workshops網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ACCV 2016 Workshops網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ACCV 2016 Workshops被引頻次




書目名稱Computer Vision – ACCV 2016 Workshops被引頻次學(xué)科排名




書目名稱Computer Vision – ACCV 2016 Workshops年度引用




書目名稱Computer Vision – ACCV 2016 Workshops年度引用學(xué)科排名




書目名稱Computer Vision – ACCV 2016 Workshops讀者反饋




書目名稱Computer Vision – ACCV 2016 Workshops讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:09:52 | 只看該作者
Brandon J. Sumpio,Aristidis Vevesvision pipeline is suitable for home monitoring in a controlled environment, with calorific expenditure estimates above accuracy levels of commonly used manual estimations via METs. With the dataset released, our work establishes a baseline for future research for this little-explored area of comput
板凳
發(fā)表于 2025-3-22 01:08:48 | 只看該作者
地板
發(fā)表于 2025-3-22 08:24:51 | 只看該作者
5#
發(fā)表于 2025-3-22 10:09:34 | 只看該作者
Edwin B. Fisher,Paul Bloch,William Sherlaw?to 0.74?dB over the second-best method. Moreover, experiments on the COFW dataset and a number of real-world images show that the proposed method successfully restores occluded facial regions in the wild even for CCTV quality images.
6#
發(fā)表于 2025-3-22 16:58:50 | 只看該作者
7#
發(fā)表于 2025-3-22 17:04:41 | 只看該作者
Genetic Determinants of Type 2 Diabeteservention and prior data training. Due to the large variability in the feature values, we assigned the fuzzy membership to these features instead of hard thresholding to reduce classification errors. Simulation carried out with available dataset, show that smoke is accurately localized both in time and space via proposed approach.
8#
發(fā)表于 2025-3-22 22:39:55 | 只看該作者
Cameron M. Akbari MD, MBA, FACS adaptive parameters to address these problems. We generalize key features that affect SR methods’ applicability of implementation on hardware and show NLM is fit for hardware implementation. The experimental results validate the proposed algorithm.
9#
發(fā)表于 2025-3-23 03:37:00 | 只看該作者
Thanh Dinh DPM,Aristidis Veves MD, DScce. Then, a self-adaptive .-Laplace variation function is used as the regularization operator while the regularization parameter is adaptively obtained via a barrier function. Finally, experimental results demonstrate the superiority of the proposed method in suppressing noise and preserving fine details.
10#
發(fā)表于 2025-3-23 08:37:55 | 只看該作者
Model and Dictionary Guided Face Inpainting in the Wild?to 0.74?dB over the second-best method. Moreover, experiments on the COFW dataset and a number of real-world images show that the proposed method successfully restores occluded facial regions in the wild even for CCTV quality images.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新宾| 盐山县| 同江市| 疏勒县| 普宁市| 石景山区| 峨眉山市| 伽师县| 黔西县| 青州市| 桂平市| 喀喇| 留坝县| 海淀区| 马边| 克拉玛依市| 来凤县| 安顺市| 崇文区| 辰溪县| 扶沟县| 通许县| 凤台县| 屯留县| 威宁| 冕宁县| 庆阳市| 周宁县| 繁峙县| 扬中市| 灵台县| 常宁市| 贵溪市| 同德县| 新建县| 济阳县| 左贡县| 清水河县| 宜宾市| 体育| 文水县|