找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Machine Learning in Agriculture, Volume 3; Jagdish Chand Bansal,Mohammad Shorif Uddin Book 2023 The Editor(s) (if appl

[復(fù)制鏈接]
樓主: 是英寸
31#
發(fā)表于 2025-3-27 00:21:07 | 只看該作者
32#
發(fā)表于 2025-3-27 02:53:00 | 只看該作者
33#
發(fā)表于 2025-3-27 09:15:12 | 只看該作者
34#
發(fā)表于 2025-3-27 11:50:57 | 只看該作者
35#
發(fā)表于 2025-3-27 17:03:37 | 只看該作者
,A New Methodology to?Detect Plant Disease Using Reprojected Multispectral Images from?RGB Colour Sp importance, feasibility, and applicability of the proposed method to identify plant diseases with affordable limits. The research found that the proposed model able to improve 4.35% detection accuracy compare to RGB colour-based images using identical deep learning-based detection model. To do so,
36#
發(fā)表于 2025-3-27 20:51:07 | 只看該作者
,Analysis of?the?Performance of?YOLO Models for?Tomato Plant Diseases Identification,ction scores on detection accuracy, precision, recall and F-1 score. However, YOLO-5 tiny performs better in terms of detection time but comprises detection accuracy. In this study, a publicly available data set name . has been used.
37#
發(fā)表于 2025-3-27 21:59:55 | 只看該作者
,Strawberries Maturity Level Detection Using Convolutional Neural Network (CNN) and?Ensemble Method,oposed based on SqueezeNet, GoogleNet, and VGG-16. Based on the considered performance matrices, SqueezeNet is recommended as the most effective model among all the classifiers and networks for detecting and classifying the maturity levels of strawberries.
38#
發(fā)表于 2025-3-28 05:22:01 | 只看該作者
39#
發(fā)表于 2025-3-28 09:17:48 | 只看該作者
Leveraging Computer Vision for Precision Viticulture, automation, posing new challenges and objectives that have not yet been explored. This work intends to deliver a complete guide of the current status of computer vision in viticulture, covering all management practices, such as pruning, binding, shoot thinning, weeding, spraying, leaf thinning, top
40#
發(fā)表于 2025-3-28 12:51:17 | 只看該作者
2524-7565 nd overall automation through robots and drones. The topics covered in the current volume, along with the previous volumes, are comprehensive literature for both beginners and experienced in this domain..978-981-99-3756-1978-981-99-3754-7Series ISSN 2524-7565 Series E-ISSN 2524-7573
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘泉县| 桃园市| 花莲县| 古蔺县| 杭州市| 呈贡县| 皮山县| 上林县| 安阳县| 邵东县| 塘沽区| 南京市| 阳城县| 大城县| 简阳市| 庆云县| 原平市| 水城县| 南京市| 冕宁县| 凉城县| 枝江市| 府谷县| 太和县| 铜梁县| 兴城市| 昌乐县| 普定县| 拜泉县| 定日县| 巴彦淖尔市| 阳春市| 霍州市| 阜阳市| 瑞金市| 封开县| 开远市| 古交市| 克什克腾旗| 上饶县| 清远市|