找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Machine Learning in Agriculture, Volume 3; Jagdish Chand Bansal,Mohammad Shorif Uddin Book 2023 The Editor(s) (if appl

[復制鏈接]
查看: 28663|回復: 54
樓主
發(fā)表于 2025-3-21 19:54:27 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision and Machine Learning in Agriculture, Volume 3
編輯Jagdish Chand Bansal,Mohammad Shorif Uddin
視頻videohttp://file.papertrans.cn/235/234069/234069.mp4
概述Describes intelligent robots and drones.Discusses research outputs in precision agriculture.Presents applications of computer vision and machine learning (CV-ML) for better agricultural practices
叢書名稱Algorithms for Intelligent Systems
圖書封面Titlebook: Computer Vision and Machine Learning in Agriculture, Volume 3;  Jagdish Chand Bansal,Mohammad Shorif Uddin Book 2023 The Editor(s) (if appl
描述.This book is as an extension of the previous two volumes on “Computer Vision and Machine Learning in Agriculture”. This volume 3 discusses solutions to the problems of agricultural production by rendering advanced machine learning including deep learning tools and techniques. The book contains 13 chapters that focus on in-depth research outputs in precision agriculture, crop farming, horticulture, floriculture, vertical farming, animal husbandry, disease detection, plant recognition, production yield, product quality, defect assessment, and overall automation through robots and drones. The topics covered in the current volume, along with the previous volumes, are comprehensive literature for both beginners and experienced in this domain..
出版日期Book 2023
關(guān)鍵詞Agricultural Drones and Robots; Computer Vision, Machine Learning, and Deep Learning Tools; Precision
版次1
doihttps://doi.org/10.1007/978-981-99-3754-7
isbn_softcover978-981-99-3756-1
isbn_ebook978-981-99-3754-7Series ISSN 2524-7565 Series E-ISSN 2524-7573
issn_series 2524-7565
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Computer Vision and Machine Learning in Agriculture, Volume 3影響因子(影響力)




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 3影響因子(影響力)學科排名




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 3網(wǎng)絡(luò)公開度




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 3網(wǎng)絡(luò)公開度學科排名




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 3被引頻次




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 3被引頻次學科排名




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 3年度引用




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 3年度引用學科排名




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 3讀者反饋




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 3讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:01:21 | 只看該作者
Building a Custom Module Manuallyomic losses for farmers and reduced supplies for the sugar industry. In this research, we propose a solution for detecting three classes of sugarcane diseases using the YOLO algorithm. The YOLO version 8 model got a maximum accuracy of 96.67% after being trained and evaluated on a dataset of sugarca
板凳
發(fā)表于 2025-3-22 03:06:29 | 只看該作者
地板
發(fā)表于 2025-3-22 08:23:56 | 只看該作者
Using Module Builder to Build Custom Modulesarliest to plan the food requirement of the rising population. Particularly in the field of computer vision, the deep learning approach has demonstrated superior performance over classical machine learning at identifying complicated structures in high-dimensional data. The proposed work focuses on c
5#
發(fā)表于 2025-3-22 09:35:09 | 只看該作者
6#
發(fā)表于 2025-3-22 14:30:39 | 只看該作者
7#
發(fā)表于 2025-3-22 18:18:13 | 只看該作者
8#
發(fā)表于 2025-3-22 22:34:46 | 只看該作者
Extending HTTP Sessions with Terracotta,n tasks, this research focused to identify models complexity, performance metrics and detection accuracy of deep learning-based model to detect crop diseases. Subsequently, this work implicitly depicts detection accuracy corresponds to hardware resources to ascertain trade-offs in relation to domain
9#
發(fā)表于 2025-3-23 03:07:14 | 只看該作者
10#
發(fā)表于 2025-3-23 09:26:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
济南市| 上思县| 论坛| 大足县| 英超| 泌阳县| 太仆寺旗| 鹤庆县| 华池县| 睢宁县| 新乡县| 靖西县| 攀枝花市| 芮城县| 金湖县| 吴桥县| 肃宁县| 盐津县| 南丹县| 甘南县| 东丽区| 中卫市| 榕江县| 会泽县| 昭平县| 巩留县| 阳东县| 沂源县| 庆城县| 鸡西市| 南澳县| 温州市| 巫溪县| 息烽县| 平凉市| 蒙城县| 修武县| 成都市| 丰顺县| 仁化县| 荣成市|