找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Machine Learning in Agriculture, Volume 2; Mohammad Shorif Uddin,Jagdish Chand Bansal Book 2022 The Editor(s) (if appl

[復(fù)制鏈接]
樓主: 實(shí)體
11#
發(fā)表于 2025-3-23 11:23:28 | 只看該作者
12#
發(fā)表于 2025-3-23 16:41:02 | 只看該作者
13#
發(fā)表于 2025-3-23 19:51:01 | 只看該作者
Real-Life Agricultural Data Retrieval for Large-Scale Annotation Flow Optimization,More advanced architectures such as transformers have also not been applied to this data before. This chapter presents a solution to speed up annotation time by providing annotators semantically similar images to their target image. An image retrieval task is conducted to map crop images to a single
14#
發(fā)表于 2025-3-23 22:45:15 | 只看該作者
15#
發(fā)表于 2025-3-24 03:22:43 | 只看該作者
Agri-Food Products Quality Assessment Methods,essment. It can provide qualitative and quantitative data under single analysis. This chapter ensures a critical review on spectroscopic and imaging techniques combined chemo metric analysis, which achieves better accuracy of 99% for food quality analysis, role of machine learning and deep learning
16#
發(fā)表于 2025-3-24 07:12:30 | 只看該作者
,ESMO-based Plant Leaf Disease Identification: A?Machine Learning Approach,detects and classifies input plant leaf data as healthy or diseased using SVM and kNN classifier, where SVM gives better accuracy of 93.67%. The obtained results indicate that the proposed methodology outperforms the other algorithms in obtaining good classification accuracy.
17#
發(fā)表于 2025-3-24 12:54:00 | 只看該作者
Apple Leaves Diseases Detection Using Deep Convolutional Neural Networks and Transfer Learning,isease classes. The dataset is improved and expanded using various data augmentation techniques on the training images. Experimental analysis on the Plant Pathology 2021-FGVC8 dataset shows that our proposed model achieves remarkable precision, recall, and .1-score of 0.9743, 0.9541, and 0.9625, res
18#
發(fā)表于 2025-3-24 15:12:58 | 只看該作者
19#
發(fā)表于 2025-3-24 21:06:27 | 只看該作者
Early Stage Prediction of Plant Leaf Diseases Using Deep Learning Models, CNN-SVM classifier is shown to be a fast, extremely efficient method for classifying specific imaging features into desired disease classes, as well as giving preferable results over the plain CNN and other classifiers, such as the support vector machine (SVM) for large datasets. Finally, the exper
20#
發(fā)表于 2025-3-25 00:37:10 | 只看該作者
2524-7565 . The remaining six chapters concentrates on optimized disease recognition through computer vision-based machine and deep learning strategies..978-981-16-9993-1978-981-16-9991-7Series ISSN 2524-7565 Series E-ISSN 2524-7573
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 12:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清远市| 安宁市| 西乡县| 抚远县| 砚山县| 华安县| 婺源县| 汪清县| 南木林县| 忻城县| 海南省| 双流县| 怀远县| 潞城市| 手机| 通城县| 同心县| 河津市| 子长县| 辽宁省| 桐庐县| 侯马市| 鹤庆县| 阿鲁科尔沁旗| 庄浪县| 竹山县| 鄱阳县| 潞西市| 北碚区| 锦州市| 嘉义县| 广平县| 岢岚县| 雷波县| 湖南省| 海阳市| 枣阳市| 托里县| 临朐县| 石狮市| 江油市|