找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Machine Learning in Agriculture, Volume 2; Mohammad Shorif Uddin,Jagdish Chand Bansal Book 2022 The Editor(s) (if appl

[復(fù)制鏈接]
查看: 43788|回復(fù): 53
樓主
發(fā)表于 2025-3-21 18:22:07 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision and Machine Learning in Agriculture, Volume 2
編輯Mohammad Shorif Uddin,Jagdish Chand Bansal
視頻videohttp://file.papertrans.cn/235/234068/234068.mp4
概述Discusses applications of computer vision and machine learning (CV-ML) for better agricultural practices.Describes intelligent robots developed with the touch of CV-ML.Focuses on optimized disease rec
叢書名稱Algorithms for Intelligent Systems
圖書封面Titlebook: Computer Vision and Machine Learning in Agriculture, Volume 2;  Mohammad Shorif Uddin,Jagdish Chand Bansal Book 2022 The Editor(s) (if appl
描述.This book is as an extension of previous book “Computer Vision and Machine Learning in Agriculture” for academicians, researchers, and professionals interested in solving the problems of agricultural plants and products for boosting production by rendering the advanced machine learning including deep learning tools and techniques to computer vision algorithms. The book contains 15 chapters. The first three chapters are devoted to crops harvesting, weed, and multi-class crops detection with the help of robots and UAVs through machine learning and deep learning algorithms for smart agriculture. Next, two chapters describe agricultural data retrievals and data collections. Chapters 6, 7, 8 and 9 focuses on yield estimation, crop maturity detection, agri-food product quality assessment, and medicinal plant recognition, respectively. The remaining six chapters concentrates on optimized disease recognition through computer vision-based machine and deep learning strategies..
出版日期Book 2022
關(guān)鍵詞Precision Agriculture; Machine Learning and Deep Learning Tools and Techniques; Disease Detection; Plan
版次1
doihttps://doi.org/10.1007/978-981-16-9991-7
isbn_softcover978-981-16-9993-1
isbn_ebook978-981-16-9991-7Series ISSN 2524-7565 Series E-ISSN 2524-7573
issn_series 2524-7565
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Computer Vision and Machine Learning in Agriculture, Volume 2影響因子(影響力)




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 2影響因子(影響力)學(xué)科排名




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 2網(wǎng)絡(luò)公開度




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 2網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 2被引頻次




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 2被引頻次學(xué)科排名




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 2年度引用




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 2年度引用學(xué)科排名




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 2讀者反饋




書目名稱Computer Vision and Machine Learning in Agriculture, Volume 2讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:33:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:30:38 | 只看該作者
Advanced Component Architecture,d coriander) and two different orchards (loquat and peach). The developed system outperformed its competitors with 91.3% mean average precision (mAP) and a processing time of 0.235?s. Thus, the proposed framework provided an excellent potential to be deployed on autonomous systems (UAVs, robots, etc
地板
發(fā)表于 2025-3-22 05:35:57 | 只看該作者
5#
發(fā)表于 2025-3-22 12:18:41 | 只看該作者
6#
發(fā)表于 2025-3-22 14:10:42 | 只看該作者
Customizing Forms and Core Templates,essment. It can provide qualitative and quantitative data under single analysis. This chapter ensures a critical review on spectroscopic and imaging techniques combined chemo metric analysis, which achieves better accuracy of 99% for food quality analysis, role of machine learning and deep learning
7#
發(fā)表于 2025-3-22 20:05:35 | 只看該作者
Using JSPs and Servlets in Stellent,detects and classifies input plant leaf data as healthy or diseased using SVM and kNN classifier, where SVM gives better accuracy of 93.67%. The obtained results indicate that the proposed methodology outperforms the other algorithms in obtaining good classification accuracy.
8#
發(fā)表于 2025-3-22 22:38:20 | 只看該作者
9#
發(fā)表于 2025-3-23 05:12:40 | 只看該作者
10#
發(fā)表于 2025-3-23 06:42:42 | 只看該作者
Customizing Forms and Core Templates, CNN-SVM classifier is shown to be a fast, extremely efficient method for classifying specific imaging features into desired disease classes, as well as giving preferable results over the plain CNN and other classifiers, such as the support vector machine (SVM) for large datasets. Finally, the exper
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 06:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陈巴尔虎旗| 保靖县| 潢川县| 霍城县| 丁青县| 黄浦区| 白玉县| 烟台市| 多伦县| 凌源市| 古浪县| 罗江县| 浮山县| 独山县| 灵璧县| 图片| 周至县| 华蓥市| 民权县| 台山市| 溧阳市| 洱源县| 贵溪市| 新蔡县| 郯城县| 丹巴县| 芦山县| 寿阳县| 怀宁县| 汽车| 丽水市| 思茅市| 中卫市| 通许县| 万盛区| 文山县| 成都市| 临澧县| 饶平县| 汕尾市| 行唐县|