找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Machine Learning in Agriculture; Mohammad Shorif Uddin,Jagdish Chand Bansal Book 2021 The Editor(s) (if applicable) an

[復(fù)制鏈接]
樓主: frustrate
31#
發(fā)表于 2025-3-26 22:47:09 | 只看該作者
,Spring Web Flow’s Architecture,ing strategies. A dataset is generated using 1574 images of various diseases. This dataset is expanded to 7870 images through the data augmentation technique by utilizing scaling and rotation. Experimentation is performed by dividing the data into training and testing categories at a ratio of 8:2. T
32#
發(fā)表于 2025-3-27 04:02:24 | 只看該作者
https://doi.org/10.1007/978-1-4302-1625-4segmentation, it is important to determine and find an optimal technique for a particular context. For an automated machine vision-based fruit disease recognition context, image segmentation plays a very important role for extracting features from the location and size of defective areas. In this re
33#
發(fā)表于 2025-3-27 08:04:36 | 只看該作者
The Definitive Guide to Spring Web Flowen made using different computer vision techniques to address different problems of agriculture. The machine vision-based diagnosis of fruits and vegetables is a notable problem domain in this regard. This problem domain has beckoned the computer vision and machine learning researchers to contribute
34#
發(fā)表于 2025-3-27 09:41:55 | 只看該作者
35#
發(fā)表于 2025-3-27 15:14:17 | 只看該作者
36#
發(fā)表于 2025-3-27 21:26:59 | 只看該作者
978-981-33-6426-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
37#
發(fā)表于 2025-3-28 01:12:31 | 只看該作者
38#
發(fā)表于 2025-3-28 02:57:26 | 只看該作者
,Spring Web Flow’s Architecture,uation, we have collected data from various online sources that included leaf images of six plants, including tomato, potato, rice, corn, grape, and apple. In our investigation, we implement numerous popular convolutional neural network (CNN) architectures. The experimental results validate that the
39#
發(fā)表于 2025-3-28 08:50:40 | 只看該作者
Detection of Rotten Fruits and Vegetables Using Deep Learning,
40#
發(fā)表于 2025-3-28 11:15:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高州市| 车致| 科技| 淄博市| 和田县| 台前县| 兴城市| 城步| 明溪县| 藁城市| 南岸区| 郧西县| 渭源县| 平塘县| 长子县| 武强县| 离岛区| 云和县| 大厂| 泽普县| 洱源县| 元江| 酒泉市| 蕲春县| 都匀市| 阿荣旗| 临海市| 罗甸县| 昔阳县| 霍林郭勒市| 雷波县| 拉孜县| 聂拉木县| 手机| 汉中市| 宜丰县| 宝兴县| 昭觉县| 那曲县| 鄢陵县| 来安县|