找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Machine Learning in Agriculture; Mohammad Shorif Uddin,Jagdish Chand Bansal Book 2021 The Editor(s) (if applicable) an

[復(fù)制鏈接]
查看: 50737|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:15:21 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision and Machine Learning in Agriculture
編輯Mohammad Shorif Uddin,Jagdish Chand Bansal
視頻videohttp://file.papertrans.cn/235/234067/234067.mp4
概述Discusses applications of computer vision and machine learning (CV-ML) for better agricultural practices.Describes intelligent robots developed with the touch of CV-ML.Presents deep learning tools and
叢書名稱Algorithms for Intelligent Systems
圖書封面Titlebook: Computer Vision and Machine Learning in Agriculture;  Mohammad Shorif Uddin,Jagdish Chand Bansal Book 2021 The Editor(s) (if applicable) an
描述.This book discusses computer vision, a noncontact as well as a nondestructive technique involving the development of theoretical and algorithmic tools for automatic visual understanding and recognition which finds huge applications in agricultural productions. It also entails how rendering of machine learning techniques to computer vision algorithms is boosting this sector with better productivity by developing more precise systems.?Computer vision and machine learning (CV-ML) helps in plant disease assessment along with crop condition monitoring to control the degradation of yield, quality, and severe financial loss for farmers. Significant scientific and technological advances have been made in defect assessment, quality grading, disease recognition, pests, insects, fruits, and vegetable types recognition and evaluation of a wide range of agricultural plants, crops, leaves, and fruits. The book discusses intelligent robots developed with the touch of CV-ML which can help farmers to perform various tasks like planting, weeding, harvesting, plant health monitoring, and so on. The topics covered in the book include plant, leaf, and fruit disease detection, crop health monitoring, a
出版日期Book 2021
關(guān)鍵詞Precision Agriculture; Disease Detection; Pest, Insect, Species Recognition; Product Quality and Defect
版次1
doihttps://doi.org/10.1007/978-981-33-6424-0
isbn_softcover978-981-33-6426-4
isbn_ebook978-981-33-6424-0Series ISSN 2524-7565 Series E-ISSN 2524-7573
issn_series 2524-7565
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Computer Vision and Machine Learning in Agriculture影響因子(影響力)




書目名稱Computer Vision and Machine Learning in Agriculture影響因子(影響力)學(xué)科排名




書目名稱Computer Vision and Machine Learning in Agriculture網(wǎng)絡(luò)公開度




書目名稱Computer Vision and Machine Learning in Agriculture網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision and Machine Learning in Agriculture被引頻次




書目名稱Computer Vision and Machine Learning in Agriculture被引頻次學(xué)科排名




書目名稱Computer Vision and Machine Learning in Agriculture年度引用




書目名稱Computer Vision and Machine Learning in Agriculture年度引用學(xué)科排名




書目名稱Computer Vision and Machine Learning in Agriculture讀者反饋




書目名稱Computer Vision and Machine Learning in Agriculture讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:15:25 | 只看該作者
,Robots and Drones in Agriculture—A Survey,s is resulting in famine, which causes a dreadful recession in the economy. To bridge this gap, automation in agriculture has been assembled with diverse robotics technologies by replacing traditional farming processes to improve agricultural efficiency. Robotics in agriculture generally represents
板凳
發(fā)表于 2025-3-22 02:25:41 | 只看該作者
地板
發(fā)表于 2025-3-22 06:23:15 | 只看該作者
A Multi-Plant Disease Diagnosis Method Using Convolutional Neural Network,oaches to recognize plant diseases are often temporal, challenging, and time-consuming. Therefore, computerized recognition of plant diseases is highly desired in the field of agricultural automation. Due to the recent improvement of computer vision, identifying diseases using leaf images of a parti
5#
發(fā)表于 2025-3-22 10:18:35 | 只看該作者
A Deep Learning-Based Approach for Potato Disease Classification,ing strategies. A dataset is generated using 1574 images of various diseases. This dataset is expanded to 7870 images through the data augmentation technique by utilizing scaling and rotation. Experimentation is performed by dividing the data into training and testing categories at a ratio of 8:2. T
6#
發(fā)表于 2025-3-22 15:52:25 | 只看該作者
7#
發(fā)表于 2025-3-22 20:20:21 | 只看該作者
8#
發(fā)表于 2025-3-22 23:08:23 | 只看該作者
An Efficient Bag-of-Features for Diseased Plant Identification, techniques have been proven to be quite useful. However, the diseased plant identification is still a challenging task due to the disparity in the leaf images. To alleviate the same, this chapter proposes a new bag-of-features-based diseased plant identification method. In the proposed method, the
9#
發(fā)表于 2025-3-23 01:42:38 | 只看該作者
10#
發(fā)表于 2025-3-23 08:56:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东方市| 锡林郭勒盟| 聊城市| 榆林市| 余庆县| 苏尼特右旗| 巴林左旗| 浦江县| 涟水县| 峨边| 华阴市| 石城县| 汉中市| 望奎县| 江津市| 永济市| 潼关县| 玉田县| 金乡县| 神池县| 蒙阴县| 甘肃省| 昌江| 封丘县| 民丰县| 洛阳市| 酉阳| 彰化县| 太湖县| 武冈市| 鸡西市| 高要市| 浪卡子县| 元谋县| 张北县| 金坛市| 星子县| 伊川县| 崇仁县| 山东省| 西丰县|