找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision Metrics; Textbook Edition Scott Krig Textbook 20161st edition Springer International Publishing Switzerland 2016 Computer v

[復(fù)制鏈接]
查看: 18992|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:34:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Computer Vision Metrics
副標(biāo)題Textbook Edition
編輯Scott Krig
視頻videohttp://file.papertrans.cn/235/234022/234022.mp4
概述Provides the most complete survey of computer vision feature description methods including local, regional, global, and basis feature learning via deep learning and neural networks.Offers learning ass
圖書(shū)封面Titlebook: Computer Vision Metrics; Textbook Edition Scott Krig Textbook 20161st edition Springer International Publishing Switzerland 2016 Computer v
描述Based on the successful 2014 book published by Apress, this textbook edition is expanded to provide a comprehensive history and state-of-the-art survey for fundamental computer vision methods and deep learning. With over 800 essential references, as well as chapter-by-chapter learning assignments, both students and researchers can dig deeper into core computer vision topics and deep learning architectures. The survey covers everything from feature descriptors, regional and global feature metrics, feature learning architectures, deep learning, neuroscience of vision, neural networks, and detailed example architectures to illustrate computer vision hardware and software optimization methods.?.To complement the survey, the textbook includes useful analyses which provide insight into the goals of various methods, why they work, and how they may be optimized..The text delivers an essential survey and a valuable taxonomy, thus providing a key learning tool for students, researchers and engineers, to supplement the many effective hands-on resources and open source projects, such as OpenCV and other imaging and deep learning tools..
出版日期Textbook 20161st edition
關(guān)鍵詞Computer vision; Deep learning; Feature learning; Feature descriptors; Image processing; Computational im
版次1
doihttps://doi.org/10.1007/978-3-319-33762-3
isbn_softcover978-3-319-81595-4
isbn_ebook978-3-319-33762-3
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書(shū)目名稱Computer Vision Metrics影響因子(影響力)




書(shū)目名稱Computer Vision Metrics影響因子(影響力)學(xué)科排名




書(shū)目名稱Computer Vision Metrics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Computer Vision Metrics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Computer Vision Metrics被引頻次




書(shū)目名稱Computer Vision Metrics被引頻次學(xué)科排名




書(shū)目名稱Computer Vision Metrics年度引用




書(shū)目名稱Computer Vision Metrics年度引用學(xué)科排名




書(shū)目名稱Computer Vision Metrics讀者反饋




書(shū)目名稱Computer Vision Metrics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:45:06 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:16:42 | 只看該作者
地板
發(fā)表于 2025-3-22 06:58:58 | 只看該作者
5#
發(fā)表于 2025-3-22 11:38:52 | 只看該作者
6#
發(fā)表于 2025-3-22 16:50:44 | 只看該作者
Interest Point Detector and Feature Descriptor Survey, region surrounding the interest point. This is in contrast to methods such as correlation, where a larger rectangular pattern is stepped over the image at pixel intervals and the correlation is measured at each location. The interest point is the, and often provides the scale, rotational, and illum
7#
發(fā)表于 2025-3-22 19:21:13 | 只看該作者
8#
發(fā)表于 2025-3-22 22:52:34 | 只看該作者
Vision Pipelines and Optimizations, at isolated computer vision algorithms, this chapter ties together many concepts into complete vision pipelines. Vision pipelines are sketched out for a few example applications to illustrate the use of different methods. Example applications include object recognition using shape and color for aut
9#
發(fā)表于 2025-3-23 01:32:53 | 只看該作者
Feature Learning Architecture Taxonomy and Neuroscience Background,ion and imaging to simulate the biology and theories of the human visual system. The state of the art in computer vision is rapidly moving towards synthetic brains and synthetic vision systems, similar to other biological sciences where we see synthetic biology such as prosthetics, robotics, and gen
10#
發(fā)表于 2025-3-23 06:01:39 | 只看該作者
Feature Learning and Deep Learning Architecture Survey,g and artificial neural networks summarized in the taxonomy of Chap. ., and complements the local and regional feature descriptor surveys in Chaps. .–.. The architectures in the survey represent significant variations across neural-network approaches, local feature descriptor and classification base
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 03:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗甸县| 六盘水市| 密山市| 洞口县| 隆子县| 特克斯县| 荣成市| 金湖县| 包头市| 佛教| 工布江达县| 武陟县| 正阳县| 绍兴县| 加查县| 卢氏县| 万源市| 大同市| 宝鸡市| 乐亭县| 偃师市| 正定县| 房山区| 安达市| 胶州市| 祁阳县| 宜良县| 富民县| 扶绥县| 镇远县| 博客| 子长县| 衡水市| 通海县| 高台县| 宁明县| 扎鲁特旗| 岳普湖县| 平昌县| 金寨县| 永平县|