找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision Metrics; Textbook Edition Scott Krig Textbook 20161st edition Springer International Publishing Switzerland 2016 Computer v

[復(fù)制鏈接]
查看: 18997|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:34:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computer Vision Metrics
副標(biāo)題Textbook Edition
編輯Scott Krig
視頻videohttp://file.papertrans.cn/235/234022/234022.mp4
概述Provides the most complete survey of computer vision feature description methods including local, regional, global, and basis feature learning via deep learning and neural networks.Offers learning ass
圖書封面Titlebook: Computer Vision Metrics; Textbook Edition Scott Krig Textbook 20161st edition Springer International Publishing Switzerland 2016 Computer v
描述Based on the successful 2014 book published by Apress, this textbook edition is expanded to provide a comprehensive history and state-of-the-art survey for fundamental computer vision methods and deep learning. With over 800 essential references, as well as chapter-by-chapter learning assignments, both students and researchers can dig deeper into core computer vision topics and deep learning architectures. The survey covers everything from feature descriptors, regional and global feature metrics, feature learning architectures, deep learning, neuroscience of vision, neural networks, and detailed example architectures to illustrate computer vision hardware and software optimization methods.?.To complement the survey, the textbook includes useful analyses which provide insight into the goals of various methods, why they work, and how they may be optimized..The text delivers an essential survey and a valuable taxonomy, thus providing a key learning tool for students, researchers and engineers, to supplement the many effective hands-on resources and open source projects, such as OpenCV and other imaging and deep learning tools..
出版日期Textbook 20161st edition
關(guān)鍵詞Computer vision; Deep learning; Feature learning; Feature descriptors; Image processing; Computational im
版次1
doihttps://doi.org/10.1007/978-3-319-33762-3
isbn_softcover978-3-319-81595-4
isbn_ebook978-3-319-33762-3
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Computer Vision Metrics影響因子(影響力)




書目名稱Computer Vision Metrics影響因子(影響力)學(xué)科排名




書目名稱Computer Vision Metrics網(wǎng)絡(luò)公開度




書目名稱Computer Vision Metrics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision Metrics被引頻次




書目名稱Computer Vision Metrics被引頻次學(xué)科排名




書目名稱Computer Vision Metrics年度引用




書目名稱Computer Vision Metrics年度引用學(xué)科排名




書目名稱Computer Vision Metrics讀者反饋




書目名稱Computer Vision Metrics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:45:06 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:16:42 | 只看該作者
地板
發(fā)表于 2025-3-22 06:58:58 | 只看該作者
5#
發(fā)表于 2025-3-22 11:38:52 | 只看該作者
6#
發(fā)表于 2025-3-22 16:50:44 | 只看該作者
Interest Point Detector and Feature Descriptor Survey, region surrounding the interest point. This is in contrast to methods such as correlation, where a larger rectangular pattern is stepped over the image at pixel intervals and the correlation is measured at each location. The interest point is the, and often provides the scale, rotational, and illum
7#
發(fā)表于 2025-3-22 19:21:13 | 只看該作者
8#
發(fā)表于 2025-3-22 22:52:34 | 只看該作者
Vision Pipelines and Optimizations, at isolated computer vision algorithms, this chapter ties together many concepts into complete vision pipelines. Vision pipelines are sketched out for a few example applications to illustrate the use of different methods. Example applications include object recognition using shape and color for aut
9#
發(fā)表于 2025-3-23 01:32:53 | 只看該作者
Feature Learning Architecture Taxonomy and Neuroscience Background,ion and imaging to simulate the biology and theories of the human visual system. The state of the art in computer vision is rapidly moving towards synthetic brains and synthetic vision systems, similar to other biological sciences where we see synthetic biology such as prosthetics, robotics, and gen
10#
發(fā)表于 2025-3-23 06:01:39 | 只看該作者
Feature Learning and Deep Learning Architecture Survey,g and artificial neural networks summarized in the taxonomy of Chap. ., and complements the local and regional feature descriptor surveys in Chaps. .–.. The architectures in the survey represent significant variations across neural-network approaches, local feature descriptor and classification base
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 08:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
香河县| 达日县| 丰城市| 瑞金市| 泽库县| 锡林郭勒盟| 综艺| 栾川县| 晋中市| 潜江市| 凭祥市| 泸定县| 海淀区| 中江县| 原阳县| 枞阳县| 寿光市| 定襄县| 璧山县| 阳东县| 神农架林区| 永丰县| 临西县| 浠水县| 新乐市| 泗水县| 东安县| 丰县| 龙山县| 太白县| 苏州市| 许昌县| 江山市| 汉川市| 习水县| 河间市| 蓝田县| 永昌县| 泽普县| 榕江县| 龙南县|