找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 8th Workshop, CSL ‘9 Leszek Pacholski,Jerzy Tiuryn Conference proceedings 1995 Springer-Verlag Berlin Heidelberg 19

[復(fù)制鏈接]
樓主: DIGN
41#
發(fā)表于 2025-3-28 17:37:09 | 只看該作者
Subtyping with singleton types,pecification {.} which is met uniquely by .. Singletons integrate abbreviational definitions into a type system: the hypothesis .: {. asserts .. The addition of singleton types is a non-conservative extension of familiar subtyping theories. In our system, more terms are typable and previously typable terms have more (non-dependent) types.
42#
發(fā)表于 2025-3-28 18:49:55 | 只看該作者
,Convergence and 0–1 laws for ,, under arbitrary measures,itrary measure. We use this theorem to obtain some results about the nonexistence of .. convergence laws for particular classes of structures. We also disprove a conjecture of Tyszkiewicz [16] relating the existence of .. and MSO 0–1 laws on classes of structures with arbitrary measures.
43#
發(fā)表于 2025-3-29 00:59:45 | 只看該作者
44#
發(fā)表于 2025-3-29 05:25:36 | 只看該作者
0302-9743 cal systems. Together, these papers give a representative snapshot of the area of logical foundations of computer science.978-3-540-60017-6978-3-540-49404-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
45#
發(fā)表于 2025-3-29 08:56:45 | 只看該作者
46#
發(fā)表于 2025-3-29 11:54:56 | 只看該作者
https://doi.org/10.1007/978-3-319-58341-9and over equationally presented constraint domains as special cases. We give a categorical treatment of the fix-point semantics of Kowalski and van Emden, which establishes completeness in a very general setting.
47#
發(fā)表于 2025-3-29 16:23:08 | 只看該作者
48#
發(fā)表于 2025-3-29 20:26:37 | 只看該作者
Logic programming in Tau Categories,and over equationally presented constraint domains as special cases. We give a categorical treatment of the fix-point semantics of Kowalski and van Emden, which establishes completeness in a very general setting.
49#
發(fā)表于 2025-3-30 02:35:03 | 只看該作者
50#
發(fā)表于 2025-3-30 06:12:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 06:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双流县| 靖江市| 军事| 来宾市| 武邑县| 池州市| 韶关市| 吉林市| 友谊县| 迁西县| 芦溪县| 阿坝县| 广灵县| 新源县| 蒙城县| 安康市| 南昌市| 新安县| 瓦房店市| 尉氏县| 宿迁市| 博罗县| 泊头市| 南丹县| 长寿区| 绥德县| 重庆市| 博白县| 汕尾市| 靖宇县| 库车县| 会泽县| 尼勒克县| 洛南县| 休宁县| 合水县| 万载县| 买车| 循化| 定兴县| 宁波市|