找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 8th Workshop, CSL ‘9 Leszek Pacholski,Jerzy Tiuryn Conference proceedings 1995 Springer-Verlag Berlin Heidelberg 19

[復(fù)制鏈接]
樓主: DIGN
21#
發(fā)表于 2025-3-25 05:21:55 | 只看該作者
22#
發(fā)表于 2025-3-25 09:42:13 | 只看該作者
Logics for context-free languages,th the class of those sets of strings which can be defined by sentences of the form ? ., where . is first order, . is a binary predicate symbol, and the range of the second order quantifier is restricted to the class of matchings. Several variations and extensions are discussed.
23#
發(fā)表于 2025-3-25 13:13:42 | 只看該作者
Is first order contained in an initial segment of PTIME?,ls of this signature are all in an initial segment of P is shown to be related to other intriguing open problems in complexity theory and logic, like P=P...The second part of the paper strengthens the result of Ph. Kolaitis of logical definability of unambiguous computations.
24#
發(fā)表于 2025-3-25 17:28:46 | 只看該作者
Computer Science Logic978-3-540-49404-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
25#
發(fā)表于 2025-3-25 22:08:19 | 只看該作者
26#
發(fā)表于 2025-3-26 03:35:26 | 只看該作者
The Carolingian Debate over Sacred Spaceth the class of those sets of strings which can be defined by sentences of the form ? ., where . is first order, . is a binary predicate symbol, and the range of the second order quantifier is restricted to the class of matchings. Several variations and extensions are discussed.
27#
發(fā)表于 2025-3-26 06:03:57 | 只看該作者
28#
發(fā)表于 2025-3-26 12:23:18 | 只看該作者
29#
發(fā)表于 2025-3-26 14:47:49 | 只看該作者
Monadic second-order logic and linear orderings of finite structures,We consider graphs in which it is possible to specify linear orderings of the sets of vertices, in uniform ways, by MS (i.e., Monadic Second-order) formulas. We also consider classes of graphs ? such that for every L.?, L is recognizable iff it is MS-definable. Our results concern in particular dependency graphs of partially commutative words.
30#
發(fā)表于 2025-3-26 20:31:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 06:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定日县| 乐都县| 夏河县| 姜堰市| 定襄县| 株洲市| 米脂县| 东源县| 运城市| 信宜市| 全州县| 西宁市| 婺源县| 伊金霍洛旗| 宣武区| 军事| 绵竹市| 札达县| 阳谷县| 桐城市| 玛纳斯县| 绩溪县| 四平市| 巴南区| 得荣县| 成都市| 江口县| 九龙县| 雷波县| 凤阳县| 新源县| 四会市| 元阳县| 阳城县| 湘潭县| 合作市| 沙坪坝区| 吴桥县| 安福县| 会理县| 桃园市|