找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational and Mathematical Models in Biology; Carla M.A. Pinto,Clara Mihaela Ionescu Book 2023 The Editor(s) (if applicable) and The A

[復(fù)制鏈接]
樓主: 可怖
21#
發(fā)表于 2025-3-25 03:28:00 | 只看該作者
,Lipschitz Quasistability of Impulsive Cohen–Grossberg Neural Network Models with Delays and Reactio results for Cohen–Grossberg delayed reaction-diffusion neural network models. In addition, the Lipschitz quasistability notion can contribute in studying of many impulsive control problems with variable impulsive perturbations as well as in the analysis of inverse problems.
22#
發(fā)表于 2025-3-25 09:11:14 | 只看該作者
A Model-Based Optimal Distributed Predictive Management of Multidrug Infusion in Lung Cancer Patienl is a good candidate to mimic clinical practice and enables the use of time or dosage constraints required for personalized therapy. Some situations are discussed in terms of finding optimality at Nash equilibrium in specific situations related to patient response and drug effects.
23#
發(fā)表于 2025-3-25 13:18:10 | 只看該作者
Fractional-Order Event-Based Control Meets Biomedical Applications, used together during surgical procedures to improve patient outcomes. By combining these techniques, physicians can provide more personalized and targeted anesthesia care for patients, which can lead to improved recovery times and reduced risk of complications. One potential solution is the use of
24#
發(fā)表于 2025-3-25 16:38:44 | 只看該作者
Analysis of a Robust Fractional Order Multivariable Controller for Combined Anesthesia and Hemodyna
25#
發(fā)表于 2025-3-25 22:48:26 | 只看該作者
Numerical Simulations for Viscous Reactive Micropolar Real Gas Flow, behavior at the microlevel. Describing microphenomena in this case was achieved through the introduction of a new hydrodynamic variable called microrotation. This work describes the micropolar gas model with special emphasis on the reactive micropolar gas, focusing on the initial boundary value pro
26#
發(fā)表于 2025-3-26 01:08:58 | 只看該作者
27#
發(fā)表于 2025-3-26 06:34:18 | 只看該作者
28#
發(fā)表于 2025-3-26 08:50:04 | 只看該作者
Rate-Induced Tipping and Chaos in Models of Epidemics,lmost) periodically forced chaos. The most simple nonautonomous smooth compartment models in epidemiology cannot show such phenomena; on the one hand because for frozen parameters, they have a unique asymptotically stable equilibrium attracting all interior points, on the other hand because the dise
29#
發(fā)表于 2025-3-26 16:11:36 | 只看該作者
30#
發(fā)表于 2025-3-26 17:00:45 | 只看該作者
,A Lotka–Volterra-Type Model Analyzed Through Different Techniques,. We show that the model is well-posed (nonnegativity of solutions and conservation law) and study the local stability using different methods. Firstly, we consider the continuous model, after which the numerical schemes of Euler and Mickens are investigated. Finally, the model is described using Ca
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 02:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
株洲市| 丹阳市| 宁强县| 西昌市| 郎溪县| 通河县| 林周县| 雅江县| 铜川市| 社会| 凯里市| 成武县| 岳池县| 天门市| 竹山县| 辽阳县| 红桥区| 江津市| 柳江县| 北海市| 岐山县| 晋城| 丹凤县| 长沙县| 巴中市| 加查县| 永州市| 青岛市| 清苑县| 仁寿县| 凉城县| 鄯善县| 沂源县| 定兴县| 尚志市| 张家港市| 昭苏县| 淮安市| 峨眉山市| 略阳县| 错那县|