找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational and Mathematical Models in Biology; Carla M.A. Pinto,Clara Mihaela Ionescu Book 2023 The Editor(s) (if applicable) and The A

[復(fù)制鏈接]
查看: 55261|回復(fù): 52
樓主
發(fā)表于 2025-3-21 19:03:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational and Mathematical Models in Biology
編輯Carla M.A. Pinto,Clara Mihaela Ionescu
視頻videohttp://file.papertrans.cn/234/233252/233252.mp4
概述Examines hybrid biological models, advanced studies on cancer and angiogenesis, and epidemiological models.Includes coverage of new directions on computational and mathematical models..Maximizes reade
叢書名稱Nonlinear Systems and Complexity
圖書封面Titlebook: Computational and Mathematical Models in Biology;  Carla M.A. Pinto,Clara Mihaela Ionescu Book 2023 The Editor(s) (if applicable) and The A
描述.This book provides the most valuable and updated research on computational and mathematical models in biological systems from influential researchers around the world and contributes to the development of future research guidelines in this topic..Topics include (but are not limited to):..modeling infectious and dynamic diseases;.regulation of cell function;..biological pattern formation;.biological networks;..tumor growth and angiogenesis;.complex biological systems;..Monte Carlo methods;.Control theory, optimization and their applications.
出版日期Book 2023
關(guān)鍵詞Computational Models; Complex biological systems; Cancer and angiogenesis; Biological pattern formation
版次1
doihttps://doi.org/10.1007/978-3-031-42689-6
isbn_softcover978-3-031-42691-9
isbn_ebook978-3-031-42689-6Series ISSN 2195-9994 Series E-ISSN 2196-0003
issn_series 2195-9994
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Computational and Mathematical Models in Biology影響因子(影響力)




書目名稱Computational and Mathematical Models in Biology影響因子(影響力)學(xué)科排名




書目名稱Computational and Mathematical Models in Biology網(wǎng)絡(luò)公開度




書目名稱Computational and Mathematical Models in Biology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational and Mathematical Models in Biology被引頻次




書目名稱Computational and Mathematical Models in Biology被引頻次學(xué)科排名




書目名稱Computational and Mathematical Models in Biology年度引用




書目名稱Computational and Mathematical Models in Biology年度引用學(xué)科排名




書目名稱Computational and Mathematical Models in Biology讀者反饋




書目名稱Computational and Mathematical Models in Biology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:01:47 | 只看該作者
地板
發(fā)表于 2025-3-22 06:38:55 | 只看該作者
5#
發(fā)表于 2025-3-22 11:08:24 | 只看該作者
Karen Perez de Arce,Massimiliano Stagiing solvability for equations with such model operators in different discrete domains of Euclidean space. For this purpose, we use so-called periodic factorization for an elliptic symbol. Existence of such factorization permits to describe solvability conditions for the discrete equations. In this w
6#
發(fā)表于 2025-3-22 14:21:22 | 只看該作者
7#
發(fā)表于 2025-3-22 18:38:19 | 只看該作者
8#
發(fā)表于 2025-3-22 23:44:55 | 只看該作者
Synaptic Mechanisms in the Auditory Systemlementary singular points. First, the desingularization technique known as blow-up technique allows one to study any type of singularities of analytic systems in dimension two even if they are not elementary. In the other hand, the introduction of the Poincaré compactification allows one to accompli
9#
發(fā)表于 2025-3-23 02:44:48 | 只看該作者
https://doi.org/10.1007/978-1-4419-9517-9. We show that the model is well-posed (nonnegativity of solutions and conservation law) and study the local stability using different methods. Firstly, we consider the continuous model, after which the numerical schemes of Euler and Mickens are investigated. Finally, the model is described using Ca
10#
發(fā)表于 2025-3-23 05:48:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新巴尔虎右旗| 深水埗区| 新津县| 涞水县| 白城市| 建昌县| 新化县| 互助| 酒泉市| 鸡泽县| 逊克县| 京山县| 贞丰县| 娱乐| 右玉县| 三江| 淳安县| 双鸭山市| 巴楚县| 阿坝县| 谷城县| 花垣县| 文成县| 乌兰察布市| 清丰县| 宜兴市| 杂多县| 辰溪县| 长兴县| 甘肃省| 常宁市| 翼城县| 贺兰县| 吉水县| 安西县| 桓仁| 乐业县| 股票| 饶阳县| 佳木斯市| 塔河县|