找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Stem Cell Biology; Methods and Protocol Patrick Cahan Book 2019 Springer Science+Business Media, LLC, part of Springer Nature

[復制鏈接]
樓主: 尤指植物
31#
發(fā)表于 2025-3-26 21:08:36 | 只看該作者
32#
發(fā)表于 2025-3-27 01:24:50 | 只看該作者
33#
發(fā)表于 2025-3-27 08:33:42 | 只看該作者
https://doi.org/10.1007/978-981-19-4847-3via analytical calculation or stochastic simulations of the model’s Master equation, and to predict the outcomes of clonal statistics for respective hypotheses. We also illustrate two approaches to compare these predictions directly with the clonal data to assess the models.
34#
發(fā)表于 2025-3-27 09:56:52 | 只看該作者
Sustainable Tertiary Education in Asia landscape. Hopfield networks are auto-associative artificial neural networks; input patterns are stored as attractors of the network and can be recalled from noisy or incomplete inputs. The resulting models capture the temporal dynamics of a gene regulatory network, yielding quantitative insight into cellular development and phenotype.
35#
發(fā)表于 2025-3-27 15:44:18 | 只看該作者
36#
發(fā)表于 2025-3-27 20:32:29 | 只看該作者
37#
發(fā)表于 2025-3-27 23:38:07 | 只看該作者
Cem Ba??ran,Ay?egül K?rlü,Saadet Yaparmajor interest. Therefore, here we present an in-house state-of-the-art scRNA-seq data analyses workflow for de novo lineage tree inference and stem cell identity prediction applicable to many biological processes under current investigation.
38#
發(fā)表于 2025-3-28 03:42:18 | 只看該作者
Cem Ba??ran,Ay?egül K?rlü,Saadet Yaparcol outlines the steps for modeling steady-state and dynamic metabolic behavior using transcriptomics and time-course metabolomics data, respectively. Using data from naive and primed pluripotent stem cells, we demonstrate how we can use genome-scale modeling and DFA to comprehensively characterize the metabolic differences between these states.
39#
發(fā)表于 2025-3-28 06:33:03 | 只看該作者
40#
發(fā)表于 2025-3-28 13:55:12 | 只看該作者
Quantitative Modelling of the Waddington Epigenetic Landscape landscape. Hopfield networks are auto-associative artificial neural networks; input patterns are stored as attractors of the network and can be recalled from noisy or incomplete inputs. The resulting models capture the temporal dynamics of a gene regulatory network, yielding quantitative insight into cellular development and phenotype.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 07:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
城步| 仁怀市| 甘南县| 乌海市| 宾川县| 兖州市| 句容市| 五指山市| 长汀县| 延川县| 华安县| 东方市| 浑源县| 荆州市| 新营市| 辽宁省| 繁昌县| 南漳县| 镇平县| 营山县| 武定县| 宁夏| 土默特左旗| 清镇市| 竹北市| 平泉县| 靖江市| 寿阳县| 巨野县| 沈丘县| 清新县| 习水县| 新泰市| 牙克石市| 高唐县| 甘南县| 左贡县| 达州市| 上高县| 金溪县| 太仆寺旗|