找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Stem Cell Biology; Methods and Protocol Patrick Cahan Book 2019 Springer Science+Business Media, LLC, part of Springer Nature

[復制鏈接]
樓主: 尤指植物
31#
發(fā)表于 2025-3-26 21:08:36 | 只看該作者
32#
發(fā)表于 2025-3-27 01:24:50 | 只看該作者
33#
發(fā)表于 2025-3-27 08:33:42 | 只看該作者
https://doi.org/10.1007/978-981-19-4847-3via analytical calculation or stochastic simulations of the model’s Master equation, and to predict the outcomes of clonal statistics for respective hypotheses. We also illustrate two approaches to compare these predictions directly with the clonal data to assess the models.
34#
發(fā)表于 2025-3-27 09:56:52 | 只看該作者
Sustainable Tertiary Education in Asia landscape. Hopfield networks are auto-associative artificial neural networks; input patterns are stored as attractors of the network and can be recalled from noisy or incomplete inputs. The resulting models capture the temporal dynamics of a gene regulatory network, yielding quantitative insight into cellular development and phenotype.
35#
發(fā)表于 2025-3-27 15:44:18 | 只看該作者
36#
發(fā)表于 2025-3-27 20:32:29 | 只看該作者
37#
發(fā)表于 2025-3-27 23:38:07 | 只看該作者
Cem Ba??ran,Ay?egül K?rlü,Saadet Yaparmajor interest. Therefore, here we present an in-house state-of-the-art scRNA-seq data analyses workflow for de novo lineage tree inference and stem cell identity prediction applicable to many biological processes under current investigation.
38#
發(fā)表于 2025-3-28 03:42:18 | 只看該作者
Cem Ba??ran,Ay?egül K?rlü,Saadet Yaparcol outlines the steps for modeling steady-state and dynamic metabolic behavior using transcriptomics and time-course metabolomics data, respectively. Using data from naive and primed pluripotent stem cells, we demonstrate how we can use genome-scale modeling and DFA to comprehensively characterize the metabolic differences between these states.
39#
發(fā)表于 2025-3-28 06:33:03 | 只看該作者
40#
發(fā)表于 2025-3-28 13:55:12 | 只看該作者
Quantitative Modelling of the Waddington Epigenetic Landscape landscape. Hopfield networks are auto-associative artificial neural networks; input patterns are stored as attractors of the network and can be recalled from noisy or incomplete inputs. The resulting models capture the temporal dynamics of a gene regulatory network, yielding quantitative insight into cellular development and phenotype.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 07:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
伊吾县| 无为县| 广汉市| 荆门市| 浮山县| 鹤岗市| 古丈县| 泸水县| 望城县| 西盟| 上杭县| 深泽县| 家居| 重庆市| 社旗县| 库车县| 聊城市| 吴桥县| 盘锦市| 大邑县| 东光县| 孝义市| 壶关县| 贞丰县| 玉田县| 岳阳县| 武胜县| 太保市| 惠安县| 应城市| 云霄县| 沅江市| 宝清县| 杭锦旗| 长子县| 高淳县| 寿宁县| 新河县| 东宁县| 正镶白旗| 福海县|