找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Optimization; A Tribute to Olvi Ma Jong-Shi Pang Book 1999 Springer Science+Business Media New York 1999 Analysis.MATLAB.Sage

[復制鏈接]
樓主: purulent
31#
發(fā)表于 2025-3-26 21:00:35 | 只看該作者
Stabilized Sequential Quadratic Programming,omovitz constraint qualification and the existence of a strictly positive multiplier (but possibly dependent constraint gradients), he proved a local quadratic convergence result. In this paper, we establish quadratic convergence in cases where both strict complementarity and the Mangasarian-Fromovi
32#
發(fā)表于 2025-3-27 02:56:19 | 只看該作者
33#
發(fā)表于 2025-3-27 08:47:30 | 只看該作者
https://doi.org/10.1007/978-3-322-90404-1. We assume that .. satisfies a weakened form of the Slater condition. We apply the bound to convex programs and we discuss its relation to Hoffman-like bounds. As a special case, we recover a bound due to Mangasarian [ 11 ] on the distance of a point to a convex set specified by inequalities.
34#
發(fā)表于 2025-3-27 11:59:08 | 只看該作者
Maurizio Gasseau Leandra Perrottaas an arbitrary field, arithmetic alone is used for the root continuation over this field. and computation is quadratic in the number of computed coefficients. If the power series of the coefficients of the polynomial are geometrically bounded, then the coefficients of the power series of the root are also.
35#
發(fā)表于 2025-3-27 16:29:36 | 只看該作者
http://image.papertrans.cn/c/image/232879.jpg
36#
發(fā)表于 2025-3-27 20:31:14 | 只看該作者
37#
發(fā)表于 2025-3-28 01:57:11 | 只看該作者
38#
發(fā)表于 2025-3-28 05:02:31 | 只看該作者
39#
發(fā)表于 2025-3-28 10:12:35 | 只看該作者
Michael B. Buchholz,Norbert Hartkampods can be extended to the multiclass case. We show how the linear programming (LP) approaches based on the work of Mangasarian and quadratic programming (QP) approaches based on Vapnik’s Support Vector Machine (SVM) can be combined to yield two new approaches to the multiclass problem. In LP multic
40#
發(fā)表于 2025-3-28 11:05:30 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
厦门市| 精河县| 佛山市| 七台河市| 什邡市| 萨嘎县| 德清县| 桦甸市| 凤城市| 习水县| 沁水县| 黑山县| 古蔺县| 秦安县| 石屏县| 南昌县| 文水县| 喀喇沁旗| 原平市| 新民市| 盐山县| 广昌县| 诏安县| 两当县| 桂东县| 巨鹿县| 抚松县| 肥西县| 微博| 固镇县| 登封市| 宝山区| 东莞市| 罗平县| 兴城市| 上高县| 芜湖县| 阳原县| 杭锦后旗| 芜湖市| 霍林郭勒市|