找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Optimization; A Tribute to Olvi Ma Jong-Shi Pang Book 1999 Springer Science+Business Media New York 1999 Analysis.MATLAB.Sage

[復(fù)制鏈接]
樓主: purulent
41#
發(fā)表于 2025-3-28 17:28:09 | 只看該作者
42#
發(fā)表于 2025-3-28 20:42:37 | 只看該作者
43#
發(fā)表于 2025-3-28 23:53:38 | 只看該作者
44#
發(fā)表于 2025-3-29 06:12:20 | 只看該作者
Maurizio Gasseau Leandra Perrottaa different version of PATH for each interface, the code was reorganized using object-oriented design techniques. At the same time, robustness issues were considered and enhancements made to the algorithm. In this paper, we document the external interfaces to the PATH code and describe some of the n
45#
發(fā)表于 2025-3-29 08:09:12 | 只看該作者
46#
發(fā)表于 2025-3-29 13:37:48 | 只看該作者
,Grundlagen der Logop?dieausbildung,omovitz constraint qualification and the existence of a strictly positive multiplier (but possibly dependent constraint gradients), he proved a local quadratic convergence result. In this paper, we establish quadratic convergence in cases where both strict complementarity and the Mangasarian-Fromovi
47#
發(fā)表于 2025-3-29 17:17:12 | 只看該作者
A Logarithmic-Quadratic Proximal Method for Variational Inequalities,c proximal term which replaces the usual quadratic, and leads to an interior proximal type algorithm. We allow for computing the iterates approximately and prove that the resulting method is globally convergent under the sole assumption that the optimal set of the variational inequality is nonempty.
48#
發(fā)表于 2025-3-29 22:29:40 | 只看該作者
A Note on Error Bounds for Convex and Nonconvex Programs,. We assume that .. satisfies a weakened form of the Slater condition. We apply the bound to convex programs and we discuss its relation to Hoffman-like bounds. As a special case, we recover a bound due to Mangasarian [ 11 ] on the distance of a point to a convex set specified by inequalities.
49#
發(fā)表于 2025-3-30 00:09:41 | 只看該作者
50#
發(fā)表于 2025-3-30 05:19:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新龙县| 荥阳市| 盐山县| 温宿县| 府谷县| 陇西县| 白朗县| 嘉黎县| 加查县| 财经| 大洼县| 安远县| 文昌市| 长岛县| 璧山县| 新建县| 安庆市| 牡丹江市| 丹江口市| 汝州市| 江西省| 朔州市| 剑阁县| 汕尾市| 巴林左旗| 芜湖市| 南康市| 华容县| 漳州市| 金门县| 陆丰市| 罗甸县| 德安县| 六枝特区| 怀来县| 邵东县| 华亭县| 津市市| 平昌县| 长治市| 五指山市|