找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods for Predicting Post-Translational Modification Sites; Dukka B. KC Book 2022 The Editor(s) (if applicable) and The Au

[復(fù)制鏈接]
樓主: 惡化
31#
發(fā)表于 2025-3-27 00:21:04 | 只看該作者
32#
發(fā)表于 2025-3-27 04:14:02 | 只看該作者
33#
發(fā)表于 2025-3-27 09:18:55 | 只看該作者
34#
發(fā)表于 2025-3-27 12:59:30 | 只看該作者
Submersible Technology: Adapting to Changed the development of a plethora of deep learning (DL)-based approaches. In this book chapter, we first review some recent DL-based approaches in the field of PTM site prediction. In addition, we also review the recent advances in the not-so-studied PTM, that is, proteolytic cleavage predictions. We
35#
發(fā)表于 2025-3-27 17:17:48 | 只看該作者
36#
發(fā)表于 2025-3-27 20:24:45 | 只看該作者
37#
發(fā)表于 2025-3-28 00:14:33 | 只看該作者
FEPS: A Tool for Feature Extraction from Protein Sequence,to extract features from protein sequence/structure often becomes one of the crucial steps for the development of machine learning-based approaches. Over the years, various sequence, structural, and physicochemical descriptors have been developed for proteins and these descriptors have been used to
38#
發(fā)表于 2025-3-28 06:05:19 | 只看該作者
iProtGly-SS: A Tool to Accurately Predict Protein Glycation Site Using Structural-Based Features,PTMs has been identified. Among them, glycation is considered as one of the most important PTMs. Glycation is associated with different neurological disorders including Parkinson and Alzheimer. It is also shown to be responsible for different diseases, including vascular complications of diabetes me
39#
發(fā)表于 2025-3-28 06:45:17 | 只看該作者
40#
發(fā)表于 2025-3-28 11:14:09 | 只看該作者
Analysis of Posttranslational Modifications in Arabidopsis Proteins and Metabolic Pathways Using thdevelopments in mass spectrometry technology and sample enrichment approaches have led to a massive expansion in the number of identified PTM types and sites within eukaryotic proteins. As these types of data become increasingly available, it is important to develop additional analysis tools and dat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扎赉特旗| 佛冈县| 明光市| 沂水县| 竹溪县| 修文县| 瓮安县| 满洲里市| 冀州市| 桦甸市| 克山县| 兴安盟| 东辽县| 贵港市| 长泰县| 中西区| 安泽县| 普洱| 西乌| 内江市| 庄河市| 黑水县| 河曲县| 长丰县| 宜都市| 岚皋县| 漳州市| 边坝县| 杭州市| 河源市| 嘉峪关市| 上杭县| 舞阳县| 惠来县| 沐川县| 淮滨县| 栖霞市| 永新县| 霸州市| 土默特右旗| 惠东县|