找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods for Predicting Post-Translational Modification Sites; Dukka B. KC Book 2022 The Editor(s) (if applicable) and The Au

[復(fù)制鏈接]
樓主: 惡化
21#
發(fā)表于 2025-3-25 05:18:33 | 只看該作者
Bioinformatic Analyses of Peroxiredoxins and RF-Prx: A Random Forest-Based Predictor and Classifiernamed “RF-Prx” based on a random forest (RF) approach integrated with K-space amino acid pairs (KSAAP) to identify peroxiredoxins and classify them into one of six subgroups. Our process performed in a superior manner compared to other machine learning classifiers. Thus the RF approach integrated wi
22#
發(fā)表于 2025-3-25 11:31:13 | 只看該作者
23#
發(fā)表于 2025-3-25 11:49:50 | 只看該作者
Systematic Characterization of Lysine Post-translational Modification Sites Using MUscADEL,te Deep Learner for lysine PTMs). Specifically, MUscADEL employs bidirectional long short-term memory (BiLSTM) recurrent neural networks and is capable of predicting eight major types of lysine PTMs in both the human and mouse proteomes. The web server of MUscADEL is publicly available at . for the
24#
發(fā)表于 2025-3-25 16:30:38 | 只看該作者
Exploration of Protein Posttranslational Modification Landscape and Cross Talk with CrossTalkMappere present a workflow to visualize histone proteins and their myriad of PTMs based on different R visualization modules applied to data from quantitative middle-down experiments. The procedure can be adapted to diverse experimental designs and is applicable to different proteins and PTMs.
25#
發(fā)表于 2025-3-25 22:05:06 | 只看該作者
26#
發(fā)表于 2025-3-26 02:27:25 | 只看該作者
27#
發(fā)表于 2025-3-26 05:12:39 | 只看該作者
28#
發(fā)表于 2025-3-26 08:29:27 | 只看該作者
29#
發(fā)表于 2025-3-26 15:45:20 | 只看該作者
30#
發(fā)表于 2025-3-26 17:46:22 | 只看該作者
J. R. McFarlane,M. Mullin,E. Jacksonnamed “RF-Prx” based on a random forest (RF) approach integrated with K-space amino acid pairs (KSAAP) to identify peroxiredoxins and classify them into one of six subgroups. Our process performed in a superior manner compared to other machine learning classifiers. Thus the RF approach integrated wi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
墨玉县| 天峻县| 昂仁县| 龙海市| 罗定市| 永州市| 遵义市| 虎林市| 和林格尔县| 马鞍山市| 安徽省| 辽宁省| 湾仔区| 德阳市| 翁源县| 泗洪县| 车致| 田林县| 卢湾区| 博客| 会同县| 仪陇县| 丰镇市| 陆川县| 盐池县| 五台县| 郎溪县| 辽中县| 永嘉县| 长岭县| 辰溪县| 湛江市| 灌阳县| 凯里市| 榆中县| 绥中县| 仙桃市| 开平市| 大田县| 巴林左旗| 靖宇县|