找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods for Predicting Post-Translational Modification Sites; Dukka B. KC Book 2022 The Editor(s) (if applicable) and The Au

[復(fù)制鏈接]
樓主: 惡化
21#
發(fā)表于 2025-3-25 05:18:33 | 只看該作者
Bioinformatic Analyses of Peroxiredoxins and RF-Prx: A Random Forest-Based Predictor and Classifiernamed “RF-Prx” based on a random forest (RF) approach integrated with K-space amino acid pairs (KSAAP) to identify peroxiredoxins and classify them into one of six subgroups. Our process performed in a superior manner compared to other machine learning classifiers. Thus the RF approach integrated wi
22#
發(fā)表于 2025-3-25 11:31:13 | 只看該作者
23#
發(fā)表于 2025-3-25 11:49:50 | 只看該作者
Systematic Characterization of Lysine Post-translational Modification Sites Using MUscADEL,te Deep Learner for lysine PTMs). Specifically, MUscADEL employs bidirectional long short-term memory (BiLSTM) recurrent neural networks and is capable of predicting eight major types of lysine PTMs in both the human and mouse proteomes. The web server of MUscADEL is publicly available at . for the
24#
發(fā)表于 2025-3-25 16:30:38 | 只看該作者
Exploration of Protein Posttranslational Modification Landscape and Cross Talk with CrossTalkMappere present a workflow to visualize histone proteins and their myriad of PTMs based on different R visualization modules applied to data from quantitative middle-down experiments. The procedure can be adapted to diverse experimental designs and is applicable to different proteins and PTMs.
25#
發(fā)表于 2025-3-25 22:05:06 | 只看該作者
26#
發(fā)表于 2025-3-26 02:27:25 | 只看該作者
27#
發(fā)表于 2025-3-26 05:12:39 | 只看該作者
28#
發(fā)表于 2025-3-26 08:29:27 | 只看該作者
29#
發(fā)表于 2025-3-26 15:45:20 | 只看該作者
30#
發(fā)表于 2025-3-26 17:46:22 | 只看該作者
J. R. McFarlane,M. Mullin,E. Jacksonnamed “RF-Prx” based on a random forest (RF) approach integrated with K-space amino acid pairs (KSAAP) to identify peroxiredoxins and classify them into one of six subgroups. Our process performed in a superior manner compared to other machine learning classifiers. Thus the RF approach integrated wi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 07:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂宁市| 福州市| 舞阳县| 奉贤区| 静乐县| 日喀则市| 德兴市| 陆川县| 昌黎县| 富阳市| 景德镇市| 兰考县| 若尔盖县| 漾濞| 宜兰县| 罗江县| 紫金县| 大渡口区| 苍溪县| 临邑县| 洞口县| 泰顺县| 高平市| 平乐县| 焦作市| 永年县| 乐清市| 邻水| 阜阳市| 东莞市| 伊通| 金华市| 菏泽市| 乐业县| 年辖:市辖区| 东城区| 宜州市| 东乡族自治县| 银川市| 大关县| 文安县|